The heat transfer and pressure drop of three types of shell-and-tube heat exchangers, one with conventional segmental baffles and the other two with continuous helical baffles, were experimentally measured with water flowing in the tube side and oil flowing in the shell side. The genetic algorithm has been used to determine the coefficients of correlations. It is shown that under the identical mass flow, a heat exchanger with continuous helical baffles offers higher heat transfer coefficients and pressure drop than that of a heat exchanger with segmental baffles, while the shell structure of the side-in-side-out model offers better performance than that of the middle-in-middle-out model. The predicted heat transfer rates and friction factors by means of the genetic algorithm provide a closer fit to experimental data than those determined by regression analysis. The predicted corrections of heat transfer and flow performance in the shell sides may be used in engineering applications and comprehensive study. It is recommended that the genetic algorithm can be used to handle more complicated problems and to obtain the optimal correlations.

1.
Krai
,
D.
,
Stehlik
,
P.
,
Van der Ploeg
,
H. J.
, and
Master
,
B. I.
, 1996, “
Helical Baffles in Shell-and-Tube Heat Exchangers, Part I: Experimental Verification
,”
Heat Transfer Eng.
0145-7632,
17
, pp.
93
101
.
2.
Peng
,
B. T.
, 2005, “
Experimental Study of Heat Transfer and Pressure Drop for Shell-and-Tube Heat Exchangers With Continuous Helical Baffles
,” Master’s thesis, Department of Energy and Power Engineering, Xi’an Jiaotong University (in Chinese).
3.
Reppich
,
M.
, and
Zagermann
,
S.
, 1995, “
A New Design Method For Segmentally Baffled Heat Exchangers
,”
Comput. Chem. Eng.
0098-1354,
19
, pp.
37
142
.
4.
Wang
,
Q. W.
, 2004, “
Current Status and Development of Shell-Side Heat Transfer Enhancement of Shell-and-Tube Heat Exchangers With Helical Baffles
,”
Journal of Xi’an Jiaotong University
,
38
, pp.
881
886
(in Chinese).
5.
Wang
,
Q. W.
,
Luo
,
L. Q.
,
Zeng
,
M.
, and
Tao
,
W. Q.
, 2005, “
Shell-Side Heat Transfer and Pressure Drop of Shell-and-Tube Heat Exchangers With Overlap Helical Baffles
,”
Journal of Chemical Industry and Engineering (China)
,
56
, pp.
598
601
(in Chinese).
6.
Xie
,
G. N.
,
Peng
,
B. T.
,
Chen
,
Q. Y.
,
Wang
,
Q. W.
,
Luo
,
L. Q.
,
Huang
,
Y. P.
, and
Xiao
,
Z. J.
, 2006, “
Experimental Study and Prediction of Pressure Drop and Heat Transfer in Shell-Side of Tube-and-Shell Heat Exchangers
,”
Proc. Chin. Soc. Electr. Eng.
0258-8013,
26
(
21
), pp.
104
108
(in Chinese).
7.
Bell
,
K. J.
, 2004, “
Heat Exchanger Design for the Process Industries
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
877
885
.
8.
Li
,
H. D.
, and
Kottke
,
V.
, 1998, “
Effect of the Leakage on Pressure Drop and Local Heat Transfer in Shell-and Tube Heat Exchangers for Staggered Tube Arrangement
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
425
433
.
9.
Naim
,
A.
, and
Bar-Cohen
,
A.
, 1996,
A New Developments in Heat Exchangers
,
Gordon and Breach Publishers
, Amsterdam, pp.
467
499
.
10.
Sen
,
M.
, and
Yang
,
K. T.
, 2000, “
Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering
,” in:
The CRC Handbook of Thermal Engineering
,
F.
Kreith
, eds.,
CRC Press
, Boca Raton, FL, pp.
620
661
.
11.
Pacheco-Vega
,
A.
,
Sen
,
M.
Yang
,
K. T.
, and
McClain
,
R. L.
, 1998, “
Genetic Algorithms-Based Predictions of Fin-Tube Heat Exchanger Performance
,”
Proceedings of 11th International Heat Transfer Conference
, Kyongju, Korea, August
23
28
.
12.
Ozkol
,
I.
, and
Komurgoz
,
G.
, 2005, “
Determination of the Optimum Geometry of the Heat Exchanger Body via a Genetic Algorithm
,”
Numer. Heat Transfer, Part A
1040-7782,
48
, pp.
283
296
.
13.
Xie
,
G. N.
, and
Wang
,
Q. W.
, 2006, “
Geometrical Optimization of Plate-Fin Heat Exchanger Using Genetic Algorithms
,”
Proc. Chin. Soc. Electr. Eng.
0258-8013,
26
(
7
), pp.
53
57
(in Chinese).
14.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
, 2004, “
Optimum Design of Crossflow Plate-Fin Heat Exchangers through Genetic Algorithm
,”
International Journal of Heat Exchangers
,
5
, pp.
379
401
.
15.
Selbas
,
R.
,
Kizilkan
,
O.
, and
Reppich
,
M.
, 2006, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process.
0255-2701,
45
, pp.
268
275
.
16.
Liang
,
H. X.
,
Xie
,
G. N.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Feng
,
Z. P.
, 2005, “
Application Genetic Algorithm to Optimization Recuperator in Micro-Turbine
,”
The 2nd International Symposium on Thermal Science and Engineering
, Beijing, China, October
23
25
.
17.
Liang
,
H. X.
,
Xie
,
G. N.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Feng
,
Z. P.
, 2006, “
Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine
,”
Proceedings of GT2006, ASME Turbo Expo
, Barcelona, Spain, Paper No. GT 2006-90366, May 8–11, 2006.
18.
Pacheco-Vega
,
A.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 2001, “
Correlations of Fin-Tube Heat Exchanger Performance Data Using Genetic Algorithms Simulated Annealing and Interval Methods
,”
Proceedings of ASME the Heat Transfer Division
, New York, November
11
16
.
19.
Pacheco-Vega
,
A.
,
Sen
,
M.
, and
Yang
,
K. T.
, 2003, “
Simultaneous Determination of In- and Over-Tube Heat Transfer Correlations in Heat Exchangers by Global Regression
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1029
1040
.
20.
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
, 2006, “
Comparison of Various Methods for Simultaneous Retrieval of Surface Emissivities and Gas Properties in Gray Participating Media
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
829
837
.
21.
Chen
,
Y. F.
,
Li
,
D. Y.
,
Lukes
,
J. R.
, and
Majumdar
,
A
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1129
1137
.
22.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows
,”
Indian Chem. Eng.
0019-4506,
16
, pp.
359
368
.
23.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Publishing Company Inc.
, Reading, MA.
24.
Michalewicz
,
Z.
, and
Fogel
,
D. B.
, 2000,
How to Solve it: Modern Heuristics
,
Springer
, New York.
25.
Carroll
,
D. L.
, 1996, “
Chemical Laser Modeling With Genetic Algorithms
,”
AIAA J.
0001-1452,
34
, pp.
338
346
.
26.
Carroll
,
D. L.
, 1996, “
Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers
,”
Developments in Theoretical and Applied Mechanics
,
H.
Wilson
et al.
, eds., School of Engineering,
The University of Alabama
, Vol.
XVIII
, pp.
411
424
.
27.
Michalewicz
,
Z.
,
Deb
,
K.
,
Schmidt
,
M.
, and
Stidsen
,
T
, 2000, “
Test-Case Generator for Constrained Parameter Optimization Techniques
,”
IEEE Trans. Evol. Comput.
1089-778X,
4
, pp.
197
215
.
28.
Pacheco-Vega
,
A.
,
Diaz
,
G
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 2001, “
Heat Rate Predictions in Humid Air-Water Heat Exchangers Using Correlations and Neural Networks
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
348
354
.
29.
Xie
,
G. N.
,
Wang
,
Q. W.
,
Zeng
,
M.
, and
Luo
,
L. Q.
, 2007, “
Heat Transfer Analysis for Shell-and-Tube Heat Exchangers With Experimental Data by Artificial Neural Networks Approach
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1096
1104
.
You do not currently have access to this content.