Due to their excellent compliance and high thermal conductivity, dry carbon nanotube (CNT) array interfaces are promising candidates to address the thermal management needs of power dense microelectronic components and devices. However, typical CNT growth temperatures (800°C) limit the substrates available for direct CNT synthesis. A microwave plasma chemical vapor deposition and a shielded growth technique were used to synthesize CNT arrays at various temperatures on silicon wafers. Measured growth surface temperatures ranged from 500°Cto800°C. The room-temperature thermal resistances of interfaces created by placing the CNT covered wafers in contact with silver foil (silicon-CNT-silver) were measured using a photoacoustic technique to range from approximately 7mm2°CWto19mm2°CW at moderate pressures. Thermal resistances increased as CNT array growth temperature decreased primarily due to a reduction in the average diameter of CNTs in the arrays.

1.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
2
), pp.
261
267
.
2.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1658
1666
.
3.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
92
100
.
4.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Hu
,
H.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
0021-8979,
101
, p.
054313
.
5.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube∕Foil Material
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
093513
.
6.
Amama
,
P. B.
,
Cola
,
B. A.
,
Sands
,
T. D.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance
,”
Nanotechnology
0957-4484,
18
, p.
385303
.
7.
Melechko
,
A. V.
,
Merkulov
,
V. I.
,
McKnight
,
T. E.
,
Guillorn
,
M. A.
,
Klein
,
K. L.
,
Lowndes
,
D. H.
, and
Simpson
,
M. L.
, 2005, “
Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly
,”
J. Appl. Phys.
0021-8979,
97
, p.
041301
.
8.
Boskovic
,
B. O.
,
Stolojan
,
V.
,
Khan
,
R. U. A.
,
Haq
,
S.
, and
Silva
,
S. R. P.
, 2002, “
Large-Area Synthesis of Carbon Nanofibers at Room Temperature
,”
Nat. Mater.
1476-1122,
1
, pp.
165
168
.
9.
Hofmann
,
S.
,
Ducati
,
C.
,
Robertson
,
J.
, and
Kleinsorge
,
B.
, 2003, “
Low-Temperature Growth of Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition
,”
Appl. Phys. Lett.
0003-6951,
83
(
1
), pp.
135
137
.
10.
Amama
,
P. B.
,
Ogebule
,
O.
,
Maschmann
,
M. R.
,
Sands
,
T. D.
, and
Fisher
,
T. S.
, 2006, “
Dendrimer-Assisted Low-Temperature Growth of Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition
,”
Chem. Commun. (Cambridge)
1359-7345,
27
, pp.
2899
2901
.
11.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
,
Gat
,
R.
, and
Fisher
,
T. S.
, 2006, “
Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes
,”
Carbon
0008-6223,
44
, pp.
10
18
.
12.
Amama
,
P. B.
,
Maschmann
,
M. R.
,
Fisher
,
T. S.
, and
Sands
,
T. D.
, 2006, “
Dendrimer-Templated Fe Nanoparticles for the Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
10636
10644
.
13.
Teo
,
K. B. K.
,
Hash
,
D. B.
,
Lacerda
,
R. G.
,
Rupesinghe
,
N. L.
,
Bell
,
M. S.
,
Dalal
,
S. H.
,
Bose
,
D.
,
Govindan
,
T. R.
,
Cruden
,
B. A.
,
Chhowalla
,
M.
,
Amaratunga
,
G. A. J.
,
Meyyappan
,
M.
, and
Milne
,
W. I.
, 2004, “
The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth
,”
Nano Lett.
1530-6984,
4
(
5
), pp.
921
926
.
14.
Meyyappan
,
M.
,
Delzeit
,
L.
,
Cassell
,
A.
, and
Hash
,
D.
, 2003, “
Carbon Nanotube Growth by PECVD: A Review
,”
Plasma Sources Sci. Technol.
0963-0252,
12
, pp.
205
216
.
15.
Shi
,
L.
, 2001, “
Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes
,” Ph.D. thesis, University of California, Berkeley.
16.
Prasher
,
R.
, 2008, “
Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
77
,
075424
.
17.
Prasher
,
R.
, 2005, “
Predicting the Thermal Resistance of Nanosized Constrictions
,”
Nano Lett.
1530-6984,
5
(
11
), pp.
2155
2159
.
18.
Madhusudana
,
C. V.
, 1996,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.