The topology and geometry of microstructures play a crucial role in determining their heat transfer performance in passive cooling devices such as heat pipes. It is therefore important to characterize microstructures based on their wicking performance, the thermal conduction resistance of the liquid filling the microstructure, and the thin-film characteristics of the liquid meniscus. In the present study, the free-surface shapes of the static liquid meniscus in common microstructures are modeled using SURFACE EVOLVER for zero Bond number. Four well-defined topologies, viz., surfaces with parallel rectangular ribs, horizontal parallel cylinders, vertically aligned cylinders, and spheres (the latter two in both square and hexagonal packing arrangements), are considered. Nondimensional capillary pressure, average distance of the liquid free-surface from solid walls (a measure of the conduction resistance of the liquid), total exposed area, and thin-film area are computed. These performance parameters are presented as functions of the nondimensional geometrical parameters characterizing the microstructures, the volume of the liquid filling the structure, and the contact angle between the liquid and solid. Based on these performance parameters, hexagonally-packed spheres on a surface are identified to be the most efficient microstructure geometry for wicking and thin-film evaporation. The solid-liquid contact angle and the nondimensional liquid volume that yield the best performance are also identified. The optimum liquid level in the wick pore that yields the highest capillary pressure and heat transfer is obtained by analyzing the variation in capillary pressure and heat transfer with liquid level and using an effective thermal resistance model for the wick.

1.
Iverson
,
B. D.
,
Davis
,
T. W.
,
Garimella
,
S. V.
,
North
,
M. T.
, and
Kang
,
S. S.
, 2007, “
Heat and Mass Transport in Heat Pipe Wick Structures
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
2
), pp.
392
404
.
2.
Davis
,
T. W.
, and
Garimella
,
S. V.
, 2008, “
Thermal Resistance Measurement Across a Wick Structure Using a Novel Thermosyphon Test Chamber
,”
Exp. Heat Transfer
0891-6152,
21
, pp.
143
154
.
3.
Bauer
,
T. H.
, 1993, “
General Analytical Approach Toward the Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
17
), pp.
4181
4191
.
4.
Abo El-Nasr
,
A.
, and
El-Haggar
,
S. M.
, 1996, “
Effective Thermal Conductivity of Heat Pipes
,”
Heat Mass Transfer
0947-7411,
32
(
1–2
), pp.
97
101
.
5.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
, 2001, “
Recent Advances in the Modeling and Applications of Nonconventional Heat Pipes
,”
Adv. Heat Transfer
0065-2717,
35
, pp.
249
308
.
6.
Gupta
,
A.
, and
Upadhya
,
G.
, 1999, “
Optimization of Heat Pipe Wick Structures for Low Wattage Electronics Cooling Applications
,”
Advances in Electronic Packaging 1999, Pacific RIM/ASME International Intersociety Electronics Photonic Packaging Conference
,
ASME
,
New York
,
26
, pp.
2129
2137
.
7.
Abhat
,
A.
, and
Seban
,
R. A.
, 1974, “
Boiling and Evaporation From Heat Pipe Wicks With Water and Acetone
,”
ASME J. Heat Transfer
0022-1481,
96
(
3
), pp.
331
337
.
8.
Hanlon
,
M. A.
, and
Ma
,
H. B.
, 2003, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
644
652
.
9.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2007, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3933
3942
.
10.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2008, “
An Analytical Solution for the Total Heat Transfer in the Thin-film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
6317
6322
.
11.
Vadakkan
,
U.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2004, “
Transport in Flat Heat Pipes at High Heat Fluxes From Multiple Discrete Sources
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
347
354
.
12.
Kim
,
S. J.
,
Seo
,
J. K.
, and
Do
,
K. H.
, 2003, “
Analytical and Experimental Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe With a Grooved Wick Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2051
2063
.
13.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
, 2008, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
19–20
), pp.
4637
4650
.
14.
Mwaba
,
M. G.
,
Huang
,
X.
, and
Gu
,
J.
, 2006, “
Influence of Wick Characteristics on Heat Pipe Performance
,”
Int. J. Energy Res.
0363-907X,
30
, pp.
489
499
.
15.
Xu
,
X.
, and
Carey
,
V. P.
, 1990, “
Film Evaporation From a Micro-Grooved Surface—An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
J. Thermophys. Heat Transfer
0887-8722,
4
, pp.
512
520
.
16.
Ma
,
H. B.
, and
Peterson
,
G. P.
, 1997, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
0887-8722,
11
, pp.
90
97
.
17.
Morris
,
S. J. S.
, 2001, “
Contact Angles for Evaporating Liquids Predicted and Compared With Existing Experiments
,”
J. Fluid Mech.
0022-1120,
432
, pp.
1
30
.
18.
Morris
,
S. J. S.
, 2003, “
The Evaporating Meniscus in a Channel
,”
J. Fluid Mech.
0022-1120,
494
, pp.
297
317
.
19.
Wang
,
H.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2008, “
Transport From a Volatile Meniscus Inside an Open Microtube
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3007
3017
.
20.
Dhavaleswarapu
,
H. K.
,
Chamarthy
,
P.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2007, “
Experimental Investigation of Steady Buoyant-Thermocapillary Convection Near an Evaporating Meniscus
,”
Phys. Fluids
1070-6631,
19
, p.
082103
.
21.
Brakke
,
K. A.
, 1992, “
The Surface Evolver
,”
Exp. Math.
1058-6458,
1
(
2
), pp.
141
165
.
22.
Hilden
,
J. L.
, and
Trumble
,
K. P.
, 2003, “
Numerical Analysis of Capillarity in Packed Spheres: Planar Hexagonal-Packed Spheres
,”
J. Colloid Interface Sci.
0021-9797,
267
, pp.
463
474
.
23.
Slobozhanin
,
L. A.
,
Alexander
,
J. I. D.
,
Collicott
,
S. H.
, and
Gongalez
,
S. R.
, 2006, “
Capillary Pressure of a Liquid in a Layer of Square-Packed Uniform Spheres
,”
Phys. Fluids
1070-6631,
18
(
8
), p.
082104
.
24.
Potash
,
M.
, Jr.
, and
Wayner
,
P. C.
, 1972, “
Evaporation From a 2-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
0017-9310,
15
(
10
), pp.
1851
1863
.
25.
Fluent Inc.
, 2004, FLUENT 6.2 User’s Guide.
You do not currently have access to this content.