Abstract

In a recent paper, Wu et al. (2005, “Dynamic Compression of Highly Compressible Porous Media With Application to Snow Compaction,” J. Fluid Mech., 542, pp. 281–304) developed a novel experimental and theoretical approach to investigate the dynamic lift forces generated in the rapid compression of highly compressible porous media, (e.g., snow layer), where a porous cylinder-piston apparatus was used to measure the pore air pressure generation and a consolidation theory was developed to capture the pore-pressure relaxation process. In the current study, we extend the approach of Wu et al. to various porous materials such as synthetic fibers. The previous experimental setup was completely redesigned, where an accelerometer and a displacement sensor were employed to capture the motion of the piston. The pore-pressure relaxation during the rapid compaction of the porous material was measured. The consolidation theory developed by Wu et al. was modified by introducing the damping effect from the solid phase of the porous materials. One uses Carman–Kozeny's relationship to describe the change in the permeability as a function of compression. By comparing the theoretical results with the experimental data, we evaluated the damping effect of the soft fibers, as well as that of the pore air pressure for two different porous materials, A and B. The experimental and theoretical approach presented herein has provided an important methodology in quantifying the contributions of different forces in the lift generation inside porous media and is an extension of the previous studies done by Wu et al.

References

1.
Grodzinsky
,
A. J.
,
Lipshitz
,
H.
, and
Glimcher
,
M. J.
,
1978
, “
Electromechanical Properties of Articular Cartilage During Compression and Stress Relaxation
,”
Nature (London)
,
275
, pp.
448
450
.10.1038/275448a0
2.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.10.1016/0021-9290(84)90031-9
3.
Mow
,
V. C.
, and
Guo
,
X. E.
,
2002
, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Annu. Rev. Biomed. Eng.
,
4
, p.
175
.10.1146/annurev.bioeng.4.110701.120309
4.
Damiano
,
E. R.
,
1998
, “
The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells Through Capillaries
,”
Microvasc. Res.
,
55
(
1
), pp.
77
91
.10.1006/mvre.1997.2052
5.
Feng
,
J.
, and
Weinbaum
,
S.
,
2000
, “
Lubrication Theory in Highly Compressible Porous Media: The Mechanics of Skiing, From Red Cells to Humans
,”
J. Fluid Mech.
,
422
, pp.
281
317
.10.1017/S0022112000001725
6.
Secomb
,
T. W.
,
Hsu
,
R.
, and
Pries
,
A. R.
,
1998
, “
A Model for Red Blood Cell Motion in Glycocalyx-Lined Capillaries
,”
Am. J. Physiol.
,
274
, pp.
H1016
H1022
.
7.
Wang
,
W.
, and
Parker
,
K. H.
,
1995
, “
The Effect of Deformable Porous Surface Layers on the Motion of a Sphere in a Narrow Cylindrical Tube
,”
J. Fluid Mech.
,
283
, pp.
287
305
.10.1017/S0022112095002321
8.
Tada
,
S.
, and
Tarbell
,
J. M.
,
2002
, “
Flow Through Internal Elastic Lamina Affects Shear Stress on Smooth Muscle Cells (3D Simulations)
,”
Am. J. Physiol. Heart Circ. Physiol.
,
282
, pp.
H576
H584
.10.1152/ajpheart.00751.2001
9.
Guo
,
P.
,
Weinstein
,
A. M.
, and
Weinbaum
,
S.
,
2000
, “
A Hydrodynamic Mechanosensory Hypothesis for Brush Border Microvilli
,”
American Journal of Physiology-Renal Physiology
,
279
(
4
), pp.
F698
F712
.10.1152/ajprenal.2000.279.4.F698
10.
Feng
,
J.
, and
Weinbaum
,
S.
,
2001
, “
Flow Through an Orifice in a Fibrous Medium With Application to Fenestral Pores in Biological Tissue
,”
Chem. Eng. Sci.
,
56
, pp.
5255
5268
.10.1016/S0009-2509(01)00203-2
11.
Weinbaum
,
S.
,
Zhang
,
X.
,
Han
,
Y.
,
Vink
,
H.
, and
Cowin
,
S. C.
,
2003
, “
Mecha- notransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
13
), pp.
7988
7995
.10.1073/pnas.1332808100
12.
Weinbaum
,
S.
,
Tarvell
,
J. M.
, and
Damiano
,
E. R.
,
2007
, “
The Structure and Function of the Endothelial Glycocalyx Layer
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
121
167
.10.1146/annurev.bioeng.9.060906.151959
13.
Farina
,
A.
,
1997
, “
Flow in Deformable Porous Media: Modeling and Simulations of Compression Moulding Processes
,”
Math. Comput. Modell.
,
26
, pp.
1
15
.10.1016/S0895-7177(97)00220-3
14.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
15.
Schrefler
,
B. A.
, and
Scotta
,
R.
,
2001
, “
A Fully Coupled Dynamic Model for Two-Phase Fluid Flow in Deformable Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3223
3246
.10.1016/S0045-7825(00)00390-X
16.
Wu
,
Q.
,
Andreopoulos
,
Y.
,
Xanthos
,
S.
, and
Weinbaum
,
S.
,
2005
, “
Dynamic Compression of Highly Compressible Porous Media With Application to Snow Compaction
,”
J. Fluid Mech.
,
542
, pp.
281
304
.10.1017/S0022112005006294
17.
Wu
,
Q.
,
Igci
,
Y.
,
Andreopoulos
,
Y.
, and
Weinbaum
,
S.
,
2006
, “
Lift Mechanics of Downhill Skiing and Snowboarding
,”
Med. Sci. Sports Exercise
,
38
(
6
), pp.
1132
1146
.10.1249/01.mss.0000222842.04510.83
18.
Wu
,
Q.
,
Andreopoulos
,
Y.
, and
Weinbaum
,
S.
,
2006
, “
Riding on Air: A New Theory for Lift Mechanics of Downhill Skiing and Snowboarding
,”
The Engineering of Sport 6
,
Springer
,
New York
, pp.
281
286
.
19.
Wu
,
Q.
,
Andreopoulos
,
Y.
, and
Weinbaum
,
S.
,
2004
, “
From Red Cells to Snow-Boarding: A New Concept for a Train Track
,”
Phys. Rev. Lett.
,
93
(
19
), p.
194501
.10.1103/PhysRevLett.93.194501
20.
Skotheim
,
J. M.
, and
Mahadevan
,
L.
,
2005
, “
Soft Lubrication: The Elastohy- drodynamics of Nonconforming and Conforming Contacts
,”
Phys. Fluids
,
17
, p.
092101
.10.1063/1.1985467
21.
Joseph
,
D. D.
,
Nield
,
D. A.
, and
Papanicolaou
,
G.
,
1982
, “
Nonlinear Equation Governing Flow in a Saturated Porous Medium
,”
Water Resour. Res.
,
18
(
4
), pp.
1049
1052
.
22.
Dupuit
,
J.
,
1863
,
Theoriques et pratiques sur le mouvement des eaux
,
Dunod
,
Paris
.
23.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung durch Boden
,”
Z. Ver. Dtsch. Ing.
,
45
, pp.
1782
1788
.
24.
Givler
,
R. C.
, and
Altobelli
,
S. A.
,
1994
, “
A Determination of the Effective Viscosity for the Brinkman-Forchheimer Flow Model
,”
J. Fluid Mech.
,
258
, pp.
355
370
.10.1017/S0022112094003368
25.
Macdonald
,
I. F.
,
EI-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media: The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
, pp.
199
208
.10.1021/i160071a001
26.
Wu
,
Q.
,
Weinbaum
,
S.
, and
Andreopoulos
,
Y.
,
2005
, “
Stagnation Point Flow in a Porous Medium
,”
Chem. Eng. Sci.
,
60
, pp.
123
134
.10.1016/j.ces.2004.07.062
27.
Hiemenz
,
K.
,
1911
, “
Die Grenzschicht an Einem in den Gleichformigen Flues- sigkeitsstrom Eingetauchten Geraden Kreiszylinder
,”
Dinglers Polytechnisches Journal
,
326
, pp.
321
410
.
28.
Homann
,
F.
,
1936
, “
Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel
,”
Z. Angew. Math. Mech.
,
16
, pp.
153
164
.10.1002/zamm.19360160304
29.
Homann
,
F.
,
1936
, “
Einfluss grosser Ziihigkeit bei Strimung um Zylinder
,”
Forsch. Geb. Ingenieurwes.
,
7
, pp.
1
9
.10.1007/BF02578758
30.
Homann
,
F.
,
1952
, “
The Effect of High Viscosity on the Flow Around a Cylinder and Around a Sphere
,” NACA TM Report No. 1344.
You do not currently have access to this content.