The efficacy of cancer chemotherapy can be greatly enhanced by thermally targeted nanoparticle liposome drug delivery system. A new theoretical model coupling heat and mass transfer has been developed to study the spatial and transient drug distributions. In this model, the influence of tumor cell apoptosis and necrosis in drug transport is also considered, in addition to the tumor microvasculature permeability to nanoliposomes. The model predictions agree well with our previous experimental results, and it has been used to simulate the nanoparticle drug distribution in the tumor under hyperthermic conditions. Results show that hyperthermia alone only enhances drug accumulation in the periphery of a tumor with 1 cm in radius, and the tumor cells in the central region are hardly damaged due to poor drug diffusion. Apoptosis or necrosis of the tumor cells could significantly influence the drug penetration and should be accounted for in drug diffusion modeling to accurately predict the therapeutic effect. Simulation study on the combined radio frequency ablation and liposomal doxorubicin delivery shows more effective treatment outcome, especially for larger tumors. The present model can be used to predict the treatment outcome and optimize the clinical protocol.

1.
Szoka
,
F. C.
, 1991, “
Liposomal Drug Delivery: Current Status and Future Prospects
,”
Membrane Fusion
,
J.
Wilschut
and
D.
Hoekstra
, eds.,
Marcel Dekker
,
New York
, pp.
845
890
.
2.
Gabizon
,
A.
,
Catane
,
R.
,
Uziely
,
B.
,
Kaufman
,
B.
,
Safra
,
T.
,
Cohen
,
R.
,
Martin
,
F.
,
Huang
,
A.
, and
Barenholz
,
Y.
, 1994, “
Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-Glycol Coated Liposomes
,”
Cancer Res.
,
54
(
4
), pp.
987
992
. 0008-5472
3.
Nagayasu
,
A.
,
Uchiyama
,
K.
, and
Kiwada
,
H.
, 1999, “
The Size of Liposomes: A Factor Which Affects Their Targeting Efficiency to Tumors and Therapeutic Activity of Liposomal Antitumor Drugs
,”
Adv. Drug Delivery Rev.
0169-409X,
40
(
1–2
), pp.
75
87
.
4.
Kong
,
G.
,
Braun
,
R. D.
, and
Dewhirst
,
M. W.
, 2000, “
Hyperthermia Enables Tumor-Specific Nanoparticle Delivery: Effect of Particle Size
,”
Cancer Res.
,
60
(
16
), pp.
4440
4445
. 0008-5472
5.
Ning
,
S.
,
Macleod
,
K.
,
Abra
,
R. M.
,
Huang
,
A. H.
, and
Hahn
,
G. M.
, 1994, “
Hyperthermia Induces Doxorubicin Release From Long-Circulating Liposomes and Enhances Their Anti-Tumor Efficacy
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
29
(
4
), pp.
827
834
. 0360-3016
6.
Dvorak
,
J.
,
Zoul
,
Z.
,
Melichar
,
B.
,
Petera
,
J.
,
Vesely
,
P.
,
Vosmik
,
M.
, and
Dolezel
,
M.
, 2004, “
Liposomal Doxorubicin Combined With Regional Hyperthermia: Reducing Systemic Toxicity and Improving Locoregional Efficacy in the Treatment of Solid Tumors
,”
J. Chemother.
,
16
, pp.
34
36
. 1120-009X
7.
Urano
,
M.
,
Kuroda
,
M.
, and
Nishimura
,
Y.
, 1999, “
For the Clinical Application of Thermochemotherapy Given at Mild Temperatures
,”
Int. J. Hyperthermia
,
15
(
2
), pp.
79
107
. 0265-6736
8.
Liu
,
P.
,
Zhang
,
A.
,
Xu
,
Y.
, and
Xu
,
L. X.
, 2005, “
Study of Non-Uniform Nanoparticle Liposome Extravasation in Tumor
,”
Int. J. Hyperthermia
,
21
(
3
), pp.
259
270
. 0265-6736
9.
Kong
,
G.
, and
Dewhirst
,
M. W.
, 1999, “
Hyperthermia and Liposomes
,”
Int. J. Hyperthermia
,
15
(
5
), pp.
345
370
. 0265-6736
10.
Xu
,
L. X.
,
Zhu
,
L.
, and
Holmes
,
K. R.
, 1998, “
Thermoregulation in the Canine Prostate During Transurethral Microwave Hyperthermia, Part I: Temperature Response
,”
Int. J. Hyperthermia
,
14
(
1
), pp.
29
37
. 0265-6736
11.
Maruyama
,
K.
,
Unezaki
,
S.
,
Takahashi
,
N.
, and
Iwatsuru
,
M.
, 1993, “
Enhanced Delivery of Doxorubicin to Tumor by Long-Circulating Thermosensitive Liposomes and Local Hyperthermia
,”
Biochim. Biophys. Acta
,
1149
(
2
), pp.
209
216
. 0006-3002
12.
Gaber
,
M. H.
,
Wu
,
N. Z.
,
Hong
,
K.
,
Huang
,
S. K.
,
Dewhirst
,
M. W.
, and
Papahadjopoulos
,
D.
, 1996, “
Thermosensitive Liposomes: Extravasation and Release of Contents in Tumor Microvascular Networks
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
36
(
5
), pp.
1177
1187
.
13.
Ribba
,
B.
,
Marron
,
K.
,
Agur
,
Z.
,
Alarcon
,
T.
, and
Maini
,
P. K.
, 2005, “
A Mathematical Model of Doxorubicin Treatment Efficacy for Non-Hodgkin’s Lymphoma: Investigation of the Current Protocol Through Theoretical Modelling Results
,”
Bull. Math. Biol.
,
67
(
1
), pp.
79
99
. 0092-8240
14.
Tzafriri
,
A. R.
,
Lerner
,
E. I.
,
Flashner-Barak
,
M.
,
Hinchcliffe
,
M.
,
Ratner
,
E.
, and
Parnas
,
H.
, 2005, “
Mathematical Modeling and Optimization of Drug Delivery From Intratumorally Injected Microspheres
,”
Clin. Cancer Res.
,
11
, pp.
826
834
. 1078-0432
15.
Ward
,
J. P.
, and
King
,
J. R.
, 2003, “
Mathematical Modelling of Drug Transport in Tumor Multicell Spheroids and Monolayer Cultures
,”
Math. Biosci.
0025-5564,
181
(
2
), pp.
177
207
.
16.
Lankelma
,
J.
,
Luque
,
R. F.
,
Dekker
,
H.
,
Schinkel
,
W.
, and
Pinedo
,
H. M.
, 2000, “
A Mathematical Model of Drug Transport in Human Breast Cancer
,”
Microvasc. Res.
,
59
(
1
), pp.
149
161
. 0026-2862
17.
Lankelma
,
J.
,
Luque
,
R. F.
,
Dekker
,
H.
, and
Pinedo
,
H. M.
, 2003, “
Simulation Model of Doxorubicin Activity in Islets of Human Breast Cancer Cells
,”
Biochim. Biophys. Acta
,
1622
(
3
), pp.
169
178
. 0006-3002
18.
Magni
,
P.
,
Simeoni
,
M.
,
Poggesi
,
I.
,
Rocchetti
,
M.
, and
De Nicolao
,
G.
, 2006, “
A Mathematical Model to Study the Effects of Drugs Administration on Tumor Growth Dynamics
,”
Math. Biosci.
,
200
(
2
), pp.
127
151
. 0025-5564
19.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 2003, “
A Mathematical Model for Cisplatin Cellular Pharmacodynamics
,”
Neoplasia
,
5
(
2
), pp.
161
169
. 1522-8002
20.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 2005, “
Two-Mechanism Peak Concentration Model for Cellular Pharmacodynamics of Doxorubicin
,”
Neoplasia
,
7
(
7
), pp.
705
713
. 1522-8002
21.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 2004, “
A Theoretical Model for Intraperitoneal Delivery of Cisplatin and the Effect of Hyperthermia on Drug Penetration Distance
,”
Neoplasia
,
6
(
2
), pp.
117
127
. 1522-8002
22.
Maruyama
,
K.
,
Ishida
,
O.
,
Takizawa
,
T.
, and
Moribe
,
K.
, 1999, “
Possibility of Active Targeting to Tumor Tissues With Liposomes
,”
Adv. Drug Delivery Rev.
,
40
(
1–2
), pp.
89
102
. 0169-409X
23.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 2000, “
A Mathematical Model for Comparison of Bolus Injection, Continuous Infusion, and Liposomal Delivery of Doxorubicin to Tumor Cells
,”
Neoplasia
,
2
(
4
), pp.
325
338
. 1522-8002
24.
Lankelma
,
J.
,
Dekker
,
H.
,
Luque
,
F. R.
,
Luykx
,
S.
,
Hoekman
,
K.
,
van der Valk
,
P.
,
van Diest
,
P. J.
, and
Pinedo
,
H. M.
, 1999, “
Doxorubicin Gradients in Human Breast Cancer
,”
Clin. Cancer Res.
,
5
(
7
), pp.
1703
1707
. 1078-0432
25.
Jang
,
S. H.
,
Wientjes
,
M. G.
,
Lu
,
D.
, and
Au
,
J. L.
, 2003, “
Drug Delivery and Transport to Solid Tumors
,”
Pharm. Res.
,
20
(
9
), pp.
1337
1350
. 0724-8741
26.
Gabizon
,
A.
,
Shmeeda
,
H.
, and
Barenholz
,
Y.
, 2003, “
Pharmacokinetics of Pegylated Liposomal Doxorubicin—Review of Animal and Human Studies
,”
Clin. Pharmacokinet
,
42
(
5
), pp.
419
436
. 0312-5963
27.
Elliott
,
G. D.
, and
McGrath
,
J. J.
, 1999, “
Freezing Response of Mammary Tissue: A Mathematical Study
,”
Heat Mass Transfer
0947-7411,
44
, pp.
59
64
.
28.
Chato
,
J. C.
, 1987, “
Thermal Properties of Tissues
,”
Handbook of Bioengineering
, Vols.
9.1–9.13
,
R.
Skalak
and
S.
Chien
, eds.,
McGraw-Hill
,
New York
.
29.
Zhang
,
A.
,
Xu
,
L. X.
,
Sandison
,
G. A.
, and
Zhang
,
J.
, 2003, “
A Microscale Model for Prediction of Breast Cancer Cell Damage During Cryosurgery
,”
Cryobiology
0011-2240,
47
(
2
), pp.
143
154
.
30.
Xu
,
L. X.
,
Zhu
,
L.
, and
Holmes
,
K. R.
, 1998, “
Thermoregulation in the Canine Prostate During Transurethral Microwave Hyperthermia, Part II: Blood Flow Response
,”
Int. J. Hyperthermia
,
14
(
1
), pp.
65
73
. 0265-6736
31.
Siegal
,
T.
,
Horowitz
,
A.
, and
Gabizon
,
A.
, 1995, “
Doxorubicin Encapsulated in Sterically Stabilized Liposomes for the Treatment of a Brain Tumor Model: Biodistribution and Therapeutic Efficacy
,”
J. Neurosurg.
,
83
(
6
), pp.
1029
1037
. 0022-3085
32.
Nugent
,
L. J.
, and
Jain
,
R. K.
, 1984, “
Extravascular Diffusion in Normal and Neoplastic Tissues
,”
Cancer Res.
,
44
(
1
), pp.
238
244
. 0008-5472
33.
Yuan
,
F.
,
Leunig
,
M.
,
Huang
,
S. K.
,
Berk
,
D. A.
,
Papahadjopoulos
,
D.
, and
Jain
,
R. K.
, 1994, “
Microvascular Permeability and Interstitial Penetration of Sterically Stabilized (Stealth) Liposomes in a Human Tumor Xenograft
,”
Cancer Res.
,
54
(
13
), pp.
3352
3356
. 0008-5472
34.
Qian
,
F.
,
Stowe
,
N.
,
Liu
,
E. H.
,
Saidel
,
G. M.
, and
Gao
,
J.
, 2003, “
Quantification of In Vivo Doxorubicin Transport From PLGA Millirods in Thermoablated Rat Livers
,”
J. Controlled Release
,
91
(
1–2
), pp.
157
166
. 0168-3659
35.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 2004, “
A Theoretical Model for Intraperitoneal Delivery of Cisplatin and the Effect of Hyperthermia on Drug Penetration Distance
,”
Neoplasia
,
6
(
2
), pp.
117
127
. 1522-8002
36.
Tsuchihashi
,
M.
,
Harashima
,
H.
, and
Kiwada
,
H.
, 1999, “
Development of a Pharmacokinetic/Pharmacodynamic (PK/PD)-Simulation System for Doxorubicin in Long Circulating Liposomes in Mice Using Peritoneal P388
,”
J. Controlled Release
,
61
(
1–2
), pp.
9
19
. 0168-3659
37.
Zhu
,
L.
,
Mi
,
Z.
, and
Xu
,
L. X.
, 1998, “
Temperature Distribution in Prostate During Transurethral Radio Frequency Thermotherapy Treatment of Benign Prostatic Hyperplasia
,”
Advances in Heat Mass Transfer in Biotechnology
, HTD-Vol.362/BED-Vol.40,
ASME
,
New York, NY
, pp.
117
122
.
38.
Jain
,
R. K.
, 1987, “
Transport of Molecules Across Tumor Vasculature
,”
Cancer Metastasis Rev.
,
6
(
4
), pp.
559
593
. 0891-9992
39.
Chen
,
B.
, and
Fu
,
B. M.
, 2004, “
An Electrodiffusion-Filtration Model for Effects of Endothelial Surface Glycocalyx on Microvessel Permeability to Macromolecules
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
614
624
.
40.
Dreher
,
M. R.
,
Liu
,
W.
,
Michelich
,
C. R.
,
Dewhirst
,
M. W.
,
Yuan
,
F.
, and
Chilkoti
,
A.
, 2006, “
Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers
,”
J. Natl. Cancer Inst.
,
98
(
5
), pp.
335
344
. 0027-8874
41.
El-Kareh
,
A. W.
, and
Secomb
,
T. W.
, 1997, “
Theoretical Models for Drug Delivery to Solid Tumors
,”
Crit. Rev. Biomed. Eng.
,
25
(
6
), pp.
503
571
. 0278-940X
42.
El-Kareh
,
A. W.
,
Braunstein
,
S. L.
, and
Secomb
,
T. W.
, 1993, “
Effect of Cell Arrangement and Interstitial Volume Fraction on the Diffusivity of Monoclonal Antibodies in Tissue
,”
Biophys. J.
,
64
(
5
), pp.
1638
1646
. 0006-3495
43.
Jang
,
S. H.
,
Wientjes
,
M. G.
,
Lu
,
D.
, and
Au
,
J. L. S.
, 2003, “
Drug Delivery and Transport to Solid Tumors
,”
Pharm. Res.
,
20
(
9
), pp.
1337
1350
. 0724-8741
44.
Liu
,
P.
, and
Xu
,
L. X.
, 2006, “
Enhanced Efficacy of Anti-Tumor Liposomal Doxorubicin by Hyperthermia
,”
28th Annual International Conference IEEE Engineering Medicine and Biology Society
.
45.
Weinstein
,
J. N.
,
Magin
,
R. L.
,
Yatvin
,
M. B.
, and
Zaharko
,
D. S.
, 1979, “
Liposomes and Local Hyperthermia: Selective Delivery of Methotrexate to Heated Tumors
,”
Science
,
204
, pp.
188
191
. 0036-8075
46.
Ahmed
,
M.
, and
Goldberg
,
S. N.
, 2004, “
Combination Radiofrequency Thermal Ablation and Adjuvant IV Liposomal Doxorubicin Increases Tissue Coagulation and Intratumoral Drug Accumulation
,”
Int. J. Hyperthermia
,
20
(
7
), pp.
781
802
. 0265-6736
47.
Zhu
,
L.
, and
Xu
,
L. X.
, 1999, “
Evaluation of the Effectiveness of Transurethral RF Hyperthermia in the Canine Prostate: Temperature Distribution Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
6
), pp.
584
590
.
48.
Schuder
,
G.
,
Pistorius
,
G.
,
Fehringer
,
M.
,
Feifel
,
G.
,
Menger
,
M. D.
, and
Vollmar
,
B.
, 2000, “
Complete Shutdown of Microvascular Perfusion Upon Hepatic Cryothermia Is Critically Dependent on Local Tissue Temperature
,”
Br. J. Cancer
,
82
(
4
), pp.
794
799
. 0007-0920
49.
Sun
,
J. Q.
,
Zhang
,
A.
, and
Xu
,
L. X.
, 2008, “
Evaluation of Alternative Cooling and Heating for Tumor Treatment
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5478
5485
. 0017-9310
50.
Lee
,
J. M.
,
Han
,
J. K.
,
Kim
,
S. H.
,
Lee
,
J. Y.
,
Choi
,
S. H.
, and
Choi
,
B. I.
, 2004, “
Hepatic Bipolar Radiofrequency Ablation Using Perfused-Cooled Electrodes: A Comparative Study in the Ex Vivo Bovine Liver
,”
Br. J. Radiol.
,
77
, pp.
944
949
. 0007-1285
51.
Eddy
,
H. A.
, 1980, “
Alterations in Tumor Microvasculature During Hyperthermia
,”
Radiology
,
137
(
2
), pp.
515
21
. 0033-8419
52.
Greenstein
,
A.
, and
Koontz
,
W. W.
, Jr.
, 2002, “
Does Local Hyperthermia Affect Metastasis of a Human Prostate Carcinoma Grown in Athymic Nude Mice?
,”
Int. J. Hyperthermia
,
18
, pp.
285
291
. 0265-6736
53.
Salsbury
,
A. J.
, 1975, “
The Significance of the Circulating Cancer Cell
,”
Cancer Treat Rev.
,
2
, pp.
55
72
. 0305-7372
You do not currently have access to this content.