This paper describes an experimental investigation on the infrared radiative properties of heavily doped Si at room temperature. Lightly doped Si wafers were ion-implanted with either boron or phosphorus atoms, with dosages corresponding to as-implanted peak doping concentrations of 1020 and 1021cm3; the peak doping concentrations after annealing are 3.1×1019 and 2.8×1020cm3, respectively. Rapid thermal annealing was performed to activate the implanted dopants. A Fourier-transform infrared spectrometer was employed to measure the transmittance and reflectance of the samples in the wavelength range from 2μm to 20μm. Accurate carrier mobility and ionization models were identified after carefully reviewing the available literature, and then incorporated into the Drude model to predict the dielectric function of doped Si. The radiative properties of doped Si samples were calculated by treating the doped region as multilayer thin films of different doping concentrations on a thick lightly doped Si substrate. The measured spectral transmittance and reflectance agree well with the model predictions. The knowledge gained from this study will aid future design and fabrication of doped Si microstructures as wavelength selective emitters and absorbers in the midinfrared region.

1.
Logan
,
R. A.
, and
Rowell
,
J. M.
, 1964, “
Conductance Anomalies in Semiconductor Tunnel Diodes
,”
Phys. Rev. Lett.
0031-9007,
13
, pp.
404
406
.
2.
Soref
,
R. A.
, 1993, “
Silicon-Based Optoelectronics
,”
Proc. IEEE
0018-9219,
81
, pp.
1687
1706
.
3.
Ehsani
,
H.
,
Bhat
,
I.
,
Borrego
,
J.
,
Gutmann
,
R.
,
Brown
,
E.
,
Dziendziel
,
R.
,
Freeman
,
M.
, and
Choudhury
,
N.
, 1997, “
Radiative Properties of Degenerately Doped Silicon Films for Applications in Thermophotovoltaic Systems
,”
J. Appl. Phys.
0021-8979,
81
, pp.
432
439
.
4.
Fujii
,
M.
,
Yamaguchi
,
Y.
,
Takase
,
Y.
,
Ninomiya
,
K.
, and
Hayashi
,
S.
, 2004, “
Control of Photoluminescence Properties of Si Nanocrystals by Simultaneously Doping n- and p-Type Impurities
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1158
1160
.
5.
Fujii
,
M.
,
Yamaguchi
,
Y.
,
Takase
,
Y.
,
Ninomiya
,
K.
, and
Hayashi
,
S.
, 2005, “
Photoluminescence From Impurity Codoped and Compensated Si Nanocrystals
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
211919
.
6.
Marquier
,
F.
,
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2007, “
Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
11
16
.
7.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
, 1988, “
Polarized Spectral Emittance From Periodic Micromachined Surfaces. II. Doped Silicon—Angular Variation
,”
Phys. Rev. B
0163-1829,
37
, pp.
10803
10813
.
8.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. -P.
,
Carminati
,
R.
, and
Greffet
,
J. -J.
, 2004, “
Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field
,”
Opt. Commun.
0030-4018,
237
, pp.
379
388
.
9.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1703
1718
.
10.
Engstrom
,
H.
, 1980, “
Infrared Reflectivity and Transmissivity of Boron-Implanted, Laser-Annealed Silicon
,”
J. Appl. Phys.
0021-8979,
51
, pp.
5245
5249
.
11.
Barta
,
E.
, and
Lux
,
G.
, 1983, “
Calculated and Measured Infrared Reflectivity of Diffused Implanted p-Type Silicon Layers
,”
J. Phys. D
0022-3727,
16
, pp.
1543
1553
.
12.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Saunders
,
Philadelphia
.
13.
Howarth
,
L. E.
, and
Gilbert
,
J. F.
, 1963, “
Determination of Free Electron Effective Mass of n-Type Silicon
,”
J. Appl. Phys.
0021-8979,
34
, pp.
236
237
.
14.
Riffe
,
D. M.
, 2002, “
Temperature Dependence of Silicon Carrier Effective Masses With Application to Femtosecond Reflectivity Measurements
,”
J. Opt. Soc. Am. B
0740-3224,
19
, pp.
1092
1100
.
15.
Miyao
,
M.
,
Motooka
,
T.
,
Natsuaki
,
N.
, and
Tokuyama
,
T.
, 1981, “
Change of the Electron Effective Mass in Extremely Heavily Doped n-Type Si Obtained by Ion-Implantation and Laser Annealing
,”
Solid State Commun.
0038-1098,
37
, pp.
605
608
.
16.
Spitzer
,
W. G.
, and
Fan
,
H. Y.
, 1957, “
Determination of Optical Constants and Carrier Effective Mass of Semiconductors
,”
Phys. Rev.
0096-8250,
106
, pp.
882
890
.
17.
Caughey
,
D. M.
, and
Thomas
,
R. E.
, 1967, “
Carrier Mobilities in Silicon Empirically Related to Doping and Field
,”
Proc. IEEE
0018-9219,
55
, pp.
2192
2193
.
18.
Baccarani
,
G.
, and
Ostoja
,
P.
, 1975, “
Electron-Mobility Empirically Related to Phosphorus Concentration in Silicon
,”
Solid-State Electron.
0038-1101,
18
, pp.
579
580
.
19.
Wagner
,
S.
, 1972, “
Diffusion of Boron From Shallow Ion Implants in Silicon
,”
J. Electrochem. Soc.
0013-4651,
119
, pp.
1570
1576
.
20.
Antoniadis
,
D. A.
,
Gonzalez
,
A. G.
, and
Dutton
,
R. W.
, 1978, “
Boron in Near-Intrinsic ⟨100⟩ and ⟨111⟩ Silicon Under Inert and Oxidizing Ambients—Diffusion and Segregation
,”
J. Electrochem. Soc.
0013-4651,
125
, pp.
813
819
.
21.
Masetti
,
G.
,
Severi
,
M.
, and
Solmi
,
S.
, 1983, “
Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-Doped, Phosphorus-Doped, and Boron-Doped Silicon
,”
IEEE Trans. Electron Devices
0018-9383,
30
, pp.
764
769
.
22.
Morin
,
F. J.
, and
Maita
,
J. P.
, 1954, “
Electrical Properties of Silicon Containing Arsenic and Boron
,”
Phys. Rev.
0096-8250,
96
, pp.
28
35
.
23.
Thurber
,
W. R.
,
Mattis
,
R. L.
,
Liu
,
Y. M.
, and
Filliben
,
J. J.
, 1980, “
Resistivity-Dopant Density Relationship for Boron-Doped Silicon
,”
J. Electrochem. Soc.
0013-4651,
127
, pp.
2291
2294
.
24.
Finetti
,
M.
,
Negrini
,
P.
,
Solmi
,
S.
, and
Nobili
,
D.
, 1981, “
Electrical-Properties and Stability of Supersaturated Phosphorus-Doped Silicon Layers
,”
J. Electrochem. Soc.
0013-4651,
128
, pp.
1313
1317
.
25.
Mousty
,
F.
,
Ostoja
,
P.
, and
Passari
,
L.
, 1974, “
Relationship Between Resistivity and Phosphorus Concentration in Silicon
,”
J. Appl. Phys.
0021-8979,
45
, pp.
4576
4580
.
26.
Thurber
,
W. R.
,
Mattis
,
R. L.
,
Liu
,
Y. M.
, and
Filliben
,
J. J.
, 1980, “
Resistivity-Dopant Density Relationship for Phosphorus-Doped Silicon
,”
J. Electrochem. Soc.
0013-4651,
127
, pp.
1807
1812
.
27.
Sze
,
S. M.
, and
Irvin
,
J. C.
, 1968, “
Resistivity Mobility and Impurity Levels in GaAs, Ge and Si at 300 K
,”
Solid-State Electron.
0038-1101,
11
, pp.
599
602
.
28.
Gaylord
,
T. K.
, and
Linxwiler
,
J. N.
, 1976, “
Method for Calculating Fermi Energy and Carrier Concentrations in Semiconductors
,”
Am. J. Phys.
0002-9505,
44
, pp.
353
355
.
29.
Park
,
K.
,
Marchenkov
,
A.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Low Temperature Characterization of Heated Microcantilevers
,”
J. Appl. Phys.
0021-8979,
101
, p.
094504
.
30.
Pearson
,
G. L.
, and
Bardeen
,
J.
, 1949, “
Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus
,”
Phys. Rev.
0096-8250,
75
, pp.
865
883
.
31.
Lee
,
T. F.
, and
Mcgill
,
T. C.
, 1975, “
Variation of Impurity-to-Band Activation-Energies With Impurity Density
,”
J. Appl. Phys.
0021-8979,
46
, pp.
373
380
.
32.
Kuzmicz
,
W.
, 1986, “
Ionization of Impurities in Silicon
,”
Solid-State Electron.
0038-1101,
29
, pp.
1223
1227
.
33.
Beadle
,
W. E.
,
Tsai
,
J. C. C.
, and
Plummer
,
R. D.
, 1985,
Quick Reference Manual for Silicon Integrated Circuit Technology
,
Wiley
,
New York
.
34.
Chapman
,
P. W.
,
Tufte
,
O. N.
,
Zook
,
J. D.
, and
Long
,
D.
, 1963, “
Electrical Properties of Heavily Doped Silicon
,”
J. Appl. Phys.
0021-8979,
34
, pp.
3291
3295
.
35.
Esaki
,
L.
, and
Miyahara
,
Y.
, 1960, “
A New Device Using the Tunneling Process in Narrow p-n Junctions
,”
Solid-State Electron.
0038-1101,
1
, pp.
13
21
.
36.
May
,
G. S.
, and
Sze
,
S. M.
, 2004,
Fundamentals of Semiconductor Fabrication
,
Wiley
,
New York
.
37.
Michel
,
A. E.
,
Rausch
,
W.
,
Ronsheim
,
P. A.
, and
Kastl
,
R. H.
, 1987, “
Rapid Annealing and the Anomalous Diffusion of Ion-Implanted Boron Into Silicon
,”
Appl. Phys. Lett.
0003-6951,
50
, pp.
416
418
.
38.
Mokhberi
,
A.
,
Griffin
,
P. B.
,
Plummer
,
J. D.
,
Paton
,
E.
,
McCoy
,
S.
, and
Elliott
,
K.
, 2002, “
A Comparative Study of Dopant Activation in Boron, BF2, Arsenic, and Phosphorus Implanted Silicon
,”
IEEE Trans. Electron Devices
0018-9383,
49
, pp.
1183
1191
.
39.
Lee
,
B. J.
,
Khuu
,
V. P.
, and
Zhang
,
Z. M.
, 2005, “
Partially Coherent Spectral Transmittance of Dielectric Thin Films With Rough Surfaces
,”
J. Thermophys. Heat Transfer
0887-8722,
19
, pp.
360
366
.
40.
Palik
,
E. D.
, 1985,
Handbook of Optical Constants of Solids
,
Academic
,
Orlando
.
41.
Zhang
,
Z. M.
,
Hanssen
,
L. M.
,
Datla
,
R. U.
, and
Drew
,
H. D.
, 1996, “
An Apparatus for Infrared Transmittance and Reflectance Measurements at Cryogenic Temperatures
,”
Int. J. Thermophys.
0195-928X,
17
, pp.
1441
1454
.
42.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.