It is well established that the use of water mist can be an attractive alternative to gaseous suppression agents to extinguish fires for specific scenarios. Among the main mechanisms, which act together to extinguish fires when using a water mist: heat extraction, oxygen displacement, and radiant heat attenuation, the last one has received the less attention, especially regarding the energy balance at the fuel surface and, therefore, the rate of generation of flammable vapors. The objective of this work is to analyze, on the one hand, the perturbing influence of a mist addition as an opposed flow to a small-scale liquid (heptane) pool fire structure, especially at its base, the more interesting zone regarding the mechanisms of flame stabilization and extinction and, on the other hand, the effect on the surface radiant heat feedback. Experiments conducted give an order of magnitude estimate in essential agreement with a radiation computation, based on the mappings, previously obtained, of the two major parameters: temperature and extinction coefficient, that determine the thermal radiation of the flame. The important information is the confirmation that radiation attenuation cannot be identified as a predominant mechanism of extinguishment.

1.
Braidech
,
M. M.
,
Neale
,
J. A.
,
Matson
,
A. F.
, and
Dufour
,
R. E.
, 1955,
The Mechanism of Extinguishment of Fire by Finely Divided Water
,
Underwriters Laboratories Inc. for the National Board of Fire Underwriters
,
New York
, pp.
73
85
.
2.
Rasbash
,
D. J.
,
Rogowski
,
Z. W.
, and
Stark
,
G. W. V.
, 1960, “
Mechanism of Extinction of Liquid Fires With Water Sprays
,”
Combust. Flame
0010-2180,
4
(
3
), pp.
223
234
.
3.
Mawhinney
,
J. R.
,
Dlugogorski
,
B. Z.
, and
Kim
,
A. K.
, 1994, “
A Closer Look at the Fire Extinguishing Properties of Water Mist
,”
Proceedings of the Fourth International Fire Safety Science Conference
, Ottawa, Canada, July 13–17, pp.
47
60
.
4.
Stephenson
,
S.
, and
Conrad
,
M. J.
, 1986, “
Attenuation of Radiant Heat on LNG/LPG Carriers With Freestanding Water Curtains
,”
Proceedings of the Gastech 86 LNG/LPG Conference
, Hamburg, Germany, pp.
157
168
.
5.
Ravigururajan
,
T. S.
, and
Beltran
,
M. R.
, 1989, “
A Model for Attenuation of Fire Radiation Through Water Droplets
,”
Fire Saf. J.
0379-7112,
15
, pp.
171
181
.
6.
Coppalle
,
A.
,
Nedelka
,
D.
, and
Bauer
,
B.
, 1993, “
Fire Protection: Water Curtains
,”
Fire Saf. J.
0379-7112,
20
, pp.
241
255
.
7.
Dembele
,
S.
,
Delmas
,
A.
, and
Sacadura
,
J. F.
, 1997, “
A Method for Modeling the Mitigation of Hazardous Fire Thermal Radiation by Water Spray Curtains
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
746
753
.
8.
Keramida
,
E. P.
,
Karayannis
,
A. N.
,
Boudouvis
,
A. G.
, and
Markatos
,
N. C.
, 2000, “
Numerical Modeling of Radiant Heat Attenuation Through Water Mist
,”
Combust. Sci. Technol.
0010-2202,
159
, pp.
351
371
.
9.
Dembele
,
S.
,
Wen
,
J. X.
, and
Sacadura
,
J. F.
, 2000, “
Analysis of the Two-Flux Model for Predicting Water Spray Transmittance in Fire Protection Application
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
183
188
.
10.
Dembele
,
S.
,
Wen
,
J. X.
, and
Sacadura
,
J. F.
, 2001, “
Experimental Study of Water Sprays for the Attenuation on Fire Thermal Radiation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
534
543
.
11.
Boulet
,
P.
,
Collin
,
A.
, and
Parent
,
G.
, 2006, “
Heat Transfer Through a Water Spray Curtain Under the Effect of a Strong Radiative Source
,”
Fire Saf. J.
0379-7112,
41
, pp.
15
30
.
12.
Parent
,
G.
,
Boulet
,
P.
,
Gauthier
,
S.
,
Blaise
,
J.
, and
Collin
,
A.
, 2006, “
Experimental Investigation of Radiation Transmission Through a Water Spray
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
97
, pp.
126
141
.
13.
Hostikka
,
S.
, and
McGrattan
,
K.
, 2006, “
Numerical Modeling of Radiative Heat Transfer in Water Sprays
,”
Fire Saf. J.
0379-7112,
41
, pp.
76
86
.
14.
Jones
,
A.
, and
Thomas
,
G. O.
, 1993, “
The Action of Water Sprays in Fires and Explosions
,”
Trans. Inst. Chem. Eng., Part B
0263-8762,
71
, pp.
41
49
.
15.
Consalvi
,
J. L.
,
Porterie
,
B.
, and
Loraud
,
J. C.
, 2003, “
On the Use of Gray Assumption for Modeling Thermal Radiation Through Water Sprays
,”
Numer. Heat Transfer, Part A
1040-7782,
44
, pp.
505
519
.
16.
Yang
,
W.
,
Parker
,
T.
,
Ladouceur
,
H. D.
, and
Kee
,
R. J.
, 2004, “
The Interaction of Thermal Radiation and Water Mist in Fire Suppression
,”
Fire Saf. J.
0379-7112,
39
, pp.
41
66
.
17.
Bouhafid
,
A.
,
Vantelon
,
J. P.
,
Joulain
,
P.
, and
Fernandez-Pello
,
A. C.
, 1988, “
On the Flame Structure at the Base of a Pool Fire
,”
Proc. Combust. Inst.
1540-7489,
22
, pp.
1291
1298
.
18.
Venkatesh
,
S.
,
Ito
,
A.
,
Saito
,
K.
, and
Wichman
,
I. S.
, 1996, “
Flame Base Structure of Small-Scale Pool Fire
,”
Proc. Combust. Inst.
1540-7489,
26
, pp.
1437
1443
.
19.
Richard
,
J.
,
Garo
,
J. P.
,
Souil
,
J. M.
,
Vantelon
,
J. P.
, and
Lemonier
,
D.
, 2002, “
Addition of a Water Mist on a Small-Scale Liquid Pool Fire: Effect on Radiant Heat Transfer at the Surface
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
377
384
.
20.
Sozbir
,
N. Y.
,
Chang
,
W.
, and
Yao
,
S. C.
, 2003, “
Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
70
74
.
21.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London
0370-1662,
430
, pp.
577
587
.
22.
Hale
,
G. M.
, and
Querry
,
M. R.
, 1973, “
Optical Constants of Water in the 200 nm to 200 μm Wavelength Region
,”
Appl. Opt.
0003-6935,
12
(
3
), pp.
555
563
.
23.
Fiveland
W. A.
, 1982, “
A Discrete Ordinates Method for Predicting Radiative Heat Transfer in Axisymmetric Enclosures
,” ASME Paper No. 82-HTD-20.
24.
Fiveland
,
W. A.
, 1984, “
Discrete Ordinates Solutions of the Radiation Transport Equations for Rectangular Enclosures
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
699
706
.
You do not currently have access to this content.