The onset of convection in a horizontal layer of a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, and allows for local thermal nonequilibrium (LTNE) between the particle and fluid phases. The analysis reveals that in some circumstances, the effect of LTNE can be significant, but for a typical dilute nanofluid (with large Lewis number and with small particle-to-fluid heat capacity ratio), the effect is small.

1.
Choi
,
S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
, FED-MD-Vol.
231
, pp.
99
105
.
2.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
0913-946X,
7
, pp.
227
233
.
3.
Buongiorno
,
J.
, and
Hu
,
L. -W.
, 2005, “
Nanofluid Coolants for Advanced Nuclear Power Plants
,”
Proceedings of the ICAPP ’05
, Seoul, May 15–19, Paper No. 5705.
4.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
5.
Tzou
,
D. Y.
, 2008, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072401
.
6.
Tzou
,
D. Y.
, 2008, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2967
2979
.
7.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, “The Onset of Convection in a Nanofluid Layer,” Int. J. Therm. Sci., submitted.
8.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 2009, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
5796
5801
.
9.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
, 2009, “Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model,” Transp. Porous Media, doi:10.1007/s11242-009-9413-2.
10.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
11.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2009, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2189
2195
.
12.
Vadasz
,
P.
, 2009, “
Nanofluid Suspensions as Derivative of Interface Heat Transfer Modeling in Porous Media
,”
ASME
Paper No. HT2009-88295.
13.
Polyaev
,
V. M.
,
Mozhaev
,
A. P.
,
Galitseysky
,
B. A.
, and
Lozhkin
,
A. L.
, 1996, “
A Study of Internal Heat Transfer in Nonuniform Porous Structures
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
426
432
.
14.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4003
4010
.
15.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
, 2004, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
1070-6631,
16
, pp.
2395
2401
.
16.
Zhang
,
Y.
, and
Ma
,
H. B.
, 2008, “
Nonequilibrium Heat Conduction in a Nanofluid With Periodic Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4862
4874
.
You do not currently have access to this content.