A new neural network modeling approach to the evaporator performance under dry and wet conditions has been developed. Not only the total cooling capacity but also the sensible heat ratio and pressure drops on both air and refrigerant sides are modeled. Since the evaporator performance under dry and wet conditions is, respectively, dominated by the dry-bulb temperature and the web-bulb temperature, two neural networks are used together for capturing the characteristics. Training of a multi-input multi-output neural network is separated into training of multi-input single-output neural networks for improving the modeling flexibility and training efficiency. Compared with a well-developed physics-based model, the standard deviations of trained neural networks under dry and wet conditions are less than 1% and 2%, respectively. Compared with the experimental data, errors fall into ±5%.

1.
Liu
,
J.
,
Wei
,
W. J.
,
Ding
,
G. L.
,
Zhang
,
C. L.
,
Fukaya
,
M.
,
Wang
,
K. J.
, and
Inagaki
,
T.
, 2004, “
A General Steady State Mathematical Model for Fin-and-Tube Heat Exchanger Based on Graph Theory
,”
Int. J. Refrig.
0140-7007,
27
, pp.
965
973
.
2.
Yang
,
K. T.
, 2008, “
Artificial Neural Networks (ANNs): A New Paradigm for Thermal Science and Engineering
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
093001
.
3.
Yang
,
K. T.
, 2007, “
Role of Artificial Intelligence (AI) in Thermal Sciences and Engineering
,”
ASME
Paper No. HT-2007-32042.
4.
Sen
,
M.
, and
Yang
,
K. T.
, 2000, “
Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering
,” Section 4.24,
The CRC Handbook of Thermal Engineering
,
F.
Kreith
, ed.,
CRC
,
Boca Raton, FL
, pp.
620
661
.
5.
Xie
,
G. N.
,
Wang
,
Q. W.
,
Zeng
,
M.
, and
Luo
,
L. Q.
, 2007, “
Heat Transfer Analysis for Shell-and-Tube Heat Exchangers With Experimental Data by Artificial Neural Networks Approach
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1096
1104
.
6.
Islamoglu
,
Y.
, 2003, “
A New Approach for the Prediction of the Heat Transfer Rate of the Wire-on-Tube Type Heat Exchanger––Use of an Artificial Neural Network Model
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
243
249
.
7.
Wu
,
Z. G.
,
Zhang
,
J. Z.
,
Tao
,
Y. B.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2008, “
Application of Artificial Neural Network Method for Performance Prediction of a Gas Cooler in a CO2 Heat Pump
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5459
5464
.
8.
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 1999, “
Simulation of Heat Exchanger Performance by Artificial Neural Networks
,”
HVAC&R Res.
,
5
(
3
), pp.
195
208
.
9.
Díaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 2001, “
Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
9
), pp.
1671
1679
.
10.
Pacheco-Vega
,
A.
,
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 2001, “
Heat Rate Predictions in Humid Air-Water Heat Exchanger Using Correlations and Neural Networks
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
348
354
.
11.
Pacheco-Vega
,
A.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 2001, “
Neural Network Analysis of Fin-Tube Refrigerating Heat Exchanger With Limited Experimental Data
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
763
770
.
12.
McQuiston
,
F. C.
, 1978, “
Heat, Mass and Momentum Transfer Data for Five Plate-Fin-Tube Heat Transfer Surfaces
,”
ASHRAE Trans.
0001-2505,
84
(
1
), pp.
266
293
.
13.
2002, REFPROP version 7.0, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Gaithersburg, MD.
You do not currently have access to this content.