Human eye is one of the most sensitive parts of the body when exposed to a thermal heat flux. Since there is no barrier (such as skin) to protect the eye against the absorption of an external thermal wave, the external flux can readily interact with cornea. The modeling of heat transport through the human eye has been the subject of interest for years, but the application of a porous media model in this field is new. In this study, a comprehensive thermal analysis has been performed on the eye. The iris/sclera section of the eye is modeled as a porous medium. The primary sections of the eye, i.e., cornea, anterior chamber, posterior chamber, iris/sclera, lens, and vitreous are considered in our analysis utilizing a two-dimensional finite element simulation. Four different models are utilized to evaluate the eye thermal response to external and internal disturbances. Results are shown in terms of temperature profiles along the pupillary axis. Effects of extreme ambient conditions, blood temperature, blood convection coefficient, ambient temperature, sclera porosity, and perfusion rate on different regions of the eye are investigated. Furthermore, the role of primary thermal transport mechanisms on the eye subject to different conditions is analyzed.

1.
Shafahi
,
M.
, and
Vafai
,
K.
, 2009, “
Thermal Modeling of the Human Eye as a Porous Structure
,”
ASME
Paper No. HT2009-88138.
2.
Ooi
,
E.
, and
Ng
,
E. Y. K.
, 2008, “
Simulation of Aqueous Humor Hydrodynamics in Human Eye Heat Transfer
,”
Comput. Biol. Med.
0010-4825,
38
, pp.
252
262
.
3.
Ng
,
E. Y. K.
, and
Ooi
,
E. H.
, 2006, “
FEM Simulation of the Eye Structure With Bioheat Analysis
,”
Comput. Methods Programs Biomed.
0169-2607,
82
, pp.
268
276
.
4.
Narasimhan
,
A.
,
Kumar Jha
,
K.
, and
Gopal
,
L.
, 2010, “
Transient Simulations of Heat Transfer in Human Eye Undergoing Laser Surgery
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
482
490
.
5.
Chua
,
K. J.
,
Ho
,
J. C.
,
Chou
,
S. K.
, and
Islam
,
M. R.
, 2005, “
On the Study of the Temperature Distribution Within a Human Eye Subjected to a Laser Source
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
1057
1065
.
6.
Lagendijk
,
J. J. W.
, 1982, “
A Mathematical Model to Calculate Temperature Distribution in Human and Rabbit Eye During Hyperthermic Treatment
,”
Phys. Med. Biol.
0031-9155,
27
, pp.
1301
1311
.
7.
Emery
,
A. F.
,
Kramar
,
P.
,
Guy
,
A. W.
, and
Lin
,
J. C.
, 1975, “
Microwave Induced Temperature Rises in Rabbit Eyes in Cataract Research
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
123
128
.
8.
Scott
,
J.
, 1988, “
A Finite Element Model of Heat Transport in the Human Eye
,”
Phys. Med. Biol.
0031-9155,
33
, pp.
227
241
.
9.
Scott
,
J.
, 1988, “
The Computation of Temperature Rises in the Human Eye Induced by Infrared Radiation
,”
Phys. Med. Biol.
0031-9155,
33
, pp.
243
257
.
10.
Kumar
,
S.
,
Acharya
,
S.
,
Beuerman
,
R.
, and
Palkama
,
A.
, 2006, “
Numerical Solution of Ocular Fluid Dynamics in a Rabbit Eye: Parametric Effects
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
530
544
.
11.
Flyckt
,
V. M. M.
,
Raaymakers
,
B. W.
, and
Lagendijk
,
J. J. W.
, 2006, “
Modeling the Impact of Blood Flow on the Temperature Distribution in the Human Eye and the Orbit: Fixed Heat Transfer Coefficients Versus the Pennes Bioheat Model Versus Discrete Blood Vessels
,”
Phys. Med. Biol.
0031-9155,
51
, pp.
5007
5021
.
12.
Amara
,
E. H.
, 1995, “
Numerical Investigations on Thermal Effects of Laser–Ocular Media Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2479
2488
.
13.
Jacobs
,
M. D.
, 2009, “
Multiscale Systems Integration in the Eye
,”
WIREs Systems Biology and Medicine
,
1
, pp.
15
27
.
14.
Mapstone
,
R.
, 1968, “
Determinants of Corneal Temperature
,”
Br. J. Ophthalmol.
,
52
, pp.
729
741
.
15.
Mapstone
,
R.
, 1968, “
Measurement of Corneal Temperature
,”
Exp. Eye Res.
0014-4835,
7
, pp.
237
242
.
16.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2008, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3190
3199
.
17.
Kuwahara
,
F.
,
Yoshihik
,
S.
,
Jianjun
,
L.
, and
Nakayama
,
A.
, 2009, “
A Porous Media Approach for Bifurcating Flow and Mass Transfer in a Human Lung
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
101013
.
18.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Liu
,
W.
, 2009, “
A Macroscopic Model for Countercurrent Bioheat Transfer in a Circulatory System
,”
J. Porous Media
1091-028X,
12
, pp.
289
300
.
19.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization of Heat Transfer Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
1608
1618
.
20.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2010, “
Analysis of Bioheat Transport Through a Dual Layer Biological Media
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
031101
.
21.
Khanafer
,
K.
, and
Vafai
,
K.
, 2009, “
Synthesis of Mathematical Models Representing Bioheat Transport
,”
Advances in Numerical Heat Transfer
, Vol.
3
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
London
, pp.
1
28
.
22.
Khakpour
,
M.
, and
Vafai
,
K.
, 2008, “
A Critical Assessment of Arterial Transport Models
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
807
822
.
23.
Khakpour
,
M.
, and
Vafai
,
K.
, 2008, “
A Comprehensive Analytical Solution of Macromolecular Transport Within an Artery
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2905
2913
.
24.
Khaled
,
A. -R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
25.
Khanafer
,
K.
, and
Vafai
,
K.
, 2006, “
The Role of Porous Media in Biomedical Engineering as Related to Magnetic Resonance Imaging and Drug Delivery
,”
Heat Mass Transfer
0947-7411,
42
, pp.
939
953
.
You do not currently have access to this content.