We propose a new device-level concept for a thermal switch that exploits the temperature dependence of the magnetization of a ferromagnetic material oscillating between a hot and a cold surface. A numerical model is constructed to examine the operation of the thermal switch. The switch turn-on temperature can be readily tuned by adjusting physical parameters of the device, such as the gap between the hot and cold surfaces and the spring constant of the structure supporting the ferromagnet. Experimentally determined oscillation frequencies are consistent with the model predictions. Additionally, it is shown that the thermal contact conductance has a large influence on the device performance. The time-averaged heat flux and effective conductance compare favorably to existing thermal switch technologies over a range of hot surface temperatures.

References

1.
Gilmore
,
D. G.
, ed., 2002,
Spacecraft Thermal Control Handbook—Volume 1: Fundamental Technologies
, 2nd ed.,
American Institute of Aeronautics and Astronautics, Aerospace Press
,
El Segundo
, CA, Chap. 10.
2.
Lemanski
,
J. L.
,
Krishnan
,
V. B.
,
Manjeri
,
R. M.
,
Notardonato
,
W. U.
, and
Vaidyanathan
,
R.
, 2006, “
A Low Hysteresis NiTiFe Shape Memory Alloy Based Thermal Conduction Switch
,”
AIP Conf. Proc.
,
824
, pp.
3
10
.
3.
Slater
,
T.
,
Van Gerwen
,
P.
,
Masure
,
E.
,
Preud’home
,
F.
, and
Baert
,
K.
, 1996, “
Thermomechanical Characteristics of a Thermal Switch
.”
Sens. Actuators A
,
53
(
1–3
), pp.
423
427
.
4.
Sunada
,
E.
,
Lankford
,
K.
,
Pauken
,
M.
,
Novak
,
K. S.
, and
Birur
,
G.
, 2002, “
Wax-Actuated Heat Switch for Mars Surface Applications
,”
Space Technology and Applications International Forum
, Vol.
608
, pp.
211
213
.
5.
Milanez
,
F. H.
, and
Mantelli
,
M.
, 2003, “
Theoretical and Experimental Studies of a Bi-metallic Heat Switch for Space Applications
,”
Int. J. Heat Transfer
,
46
, pp.
4573
4586
.
6.
Gong
,
J.
,
Cha
,
G.
,
Ju
,
Y. S.
, and
Kim
,
C.
, 2008, “
Thermal Switches Based on Coplanar EWOD for Satellite Thermal Control
,”
IEEE MEMS 2008
,
Tucson, AZ
, pp.
848
851
.
7.
Bugby
,
D. C.
,
Farmer
,
J. T.
,
O’Connor
,
B. F.
,
Wirzburger
,
M. J.
,
Abel
,
E. D.
, and
Stouffer
,
C. J.
, 2010, “
Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform
,”
Space, Propulsion and Energy Sciences International Forum—SPESIF–2010, AIP Conf. Proc.
,
1208
, pp.
76
83
.
8.
McCarty
,
R.
,
Monaghan
,
D.
,
Hallinan
,
K. P.
, and
Sanders
,
B.
, 2007, “
Experimental Verification of Thermal Switch Effectiveness in Thermoelectric Energy Harvesting
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
505
511
.
9.
Cho
,
J.
,
Wiser
,
T.
,
Richards
,
C.
,
Bahr
,
D.
, and
Richards
,
R.
, 2007, “
Fabrication and Characterization of a Thermal Switch
,”
Sens. Actuators A
,
133
, pp.
55
63
.
10.
Ujihara
,
M.
,
Carman
,
G. P.
, and
Lee
,
D. G.
, 2007, “
Thermal Energy Harvesting Device Using Ferromagnetic Materials
,”
Appl. Phys. Lett.
,
91
, p.
093508
.
11.
Cho
,
J.
,
Richards
,
C.
,
Bahr
,
D.
,
Jiao
,
J.
, and
Richards
,
R.
, 2008, “
Evaluation of Contacts for a MEMS Thermal Switch
,”
J. Micromech. Microeng.
,
18
, p.
105012
.
12.
Cha
,
G.
, and
Ju
,
Y. S.
, 2009, “
Reversible Thermal Interfaces Based on Microscale Dielectric Liquid Layers
,”
Appl. Phys. Lett.
,
94
, p.
211904
.
13.
Glorieux
,
C.
, and
Thoen
,
J.
, 1995, “
Photoacoustic Investigation of the Temperature and Magnetic-Field Dependence of the Specific-Heat Capacity and Thermal Conductivity Near the Curie Point of Gadolinium
,”
Phys. Rev. B
,
52
(
17
), pp.
12770
12778
.
You do not currently have access to this content.