Abstract

This paper describes an advanced monitoring system for fouling phenomenon in a wide range of tubular heat exchangers such as condensers and intercoolers. First, a mathematical model of fouling resistance in tubular heat exchangers is adapted. The model is based on the applied thermal power, the inside heat transfer coefficient, and geometrical characteristics of the heat exchanger under consideration. The resulting model is a function of measured quantities such as water and tube wall temperatures, fluid flow velocity, and some physical properties of the fluid flowing inside the tubes, such as viscosity, conductivity, and density. Second, an on-line fouling monitoring system was prepared, and the heat transfer resistance for selected solutions was measured in real time by this system. The effect of concentration and chemical reactions on fouling was studied experimentally using contaminants such as sodium bicarbonate, sodium chloride, calcium chloride, and a mixture of sodium bicarbonate and calcium chloride. Experimental results provide quantitative information of liquid-side fouling on heat transfer surfaces, and its effects on the thermal efficiency. Experimental data are critical for heat exchanger design and for planning operating and cleaning schedules of the heat exchanger. Uncertainty analysis shows that the experimental results are acceptable and the experimental setup is appropriate for measuring fouling resistance in industrial applications.

References

1.
Taborek
,
J.
,
Aoki
,
T.
,
Ritter
,
R. B.
,
Palen
,
J.
, and
Knudsen
,
I.
, 1972, “Predictive Methods for Fouling Behavior,”
Chem. Eng. Prog.
,
68
, pp.
69
78
.
2.
Bott
,
T. R.
, 1995,
Fouling of Heat Exchangers,
Elsevier Science B.V.
,
Netherlands
.
3.
Wahl
,
M.
, 1989,
“Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects,”
Mar. Ecol.: Prog. Ser.
,
58
, pp.
175
189
.
4.
Nebot
,
E.
,
Casanueva
,
J. F.
,
Casanueva
,
T.
, and
Sales
,
D.
, 2007,
“Model for Fouling Deposition on Power Plant Steam Condensers Cooled With Seawater: Effect of Water Velocity and Tube Material,”
Int. J. Heat Mass Transfer
,
50
, pp.
3351
3358
.
5.
Brankevich
,
G. J.
, 1990,
“Biofouling and Corrosion in Coastal Power Plant Cooling Systems,”
Mar. Technol. Soc. J.
,
24
, pp.
8
28
.
6.
Chenoweth
,
J.
, 1990,
“Final Report of the HTRI/TEMA Joint Committee to Review the Fouling Section of TEMA Standards,”
Heat Transfer Eng.
,
11
(
1
), p.
73
.
7.
Zubair
,
S. M.
,
Sheikh
,
A. K.
,
Younas
,
M.
, and
Budair
,
M. O.
, 2000,
“A Risk Based Heat Exchanger Analysis to Fouling, Part I. Performance Evaluation,”
Energy
,
25
, pp.
427
443
.
8.
Kern
,
D. Q.
, and
Seaton
,
R. E.
, 1959,
“A Theoretical Analysis of Thermal Surface Fouling,”
Br. Chem. Eng.
,
4
(
5
), pp.
258
262
.
9.
Putman
,
R. E.
, 2001,
Steam Surface Condensers
,
ASME Press
,
New York
.
10.
Patching
,
J. W.
, and
Fleming
,
G. T. A.
, 2003,
“Industrial Biofilms: Formation Problems and Control,”
Biofilms in Medicine, Industry and Environmental Technology
,
P.
Lens
,
A. P.
Moran
,
T.
Mahony
,
P.
Stoodley
,
V.
O’Flaherty
, eds.,
IWA Publishing
,
Wageningen
.
11.
Kakac
,
S.
, 1991,
Boilers, Evaporators and Condensers
,
Wiley
,
New York
.
12.
EPRI, 1985, “
Biofouling Detection Monitoring Devices: Status Assessment
,” Report No. CS3914, Project 2300-1.
13.
Morse
,
R. W.
, and
Knudsen
,
G. J.
, 1977,
“Effect of Alkalinity on the Scaling of Simulated Cooling Tower Water,”
Canad. J. Chem. Eng.
,
55
(
3
), pp.
272
278
.
14.
Story
,
M.
, and
Knudsen
,
G. J.
, 1978,
“The Effect of Heat Transfer Surface Temperature on the Scaling Behavior of Simulated Cooling Tower Water,”
AIChE Symp. Ser.
74–1124
, pp.
25
30
.
15.
Khan
,
M. S.
,
Zubair
,
S. M.
,
Budair
,
M. O.
,
Sheikh
,
A. K.
, and
Quddus
,
A.
, 1996,
“Fouling Resistance Model for Prediction of Caco3 Scaling in AISI 316 Tube,”
Int. J. Heat Mass Transfer
,
32
(
1–2
), pp.
73
79
.
16.
Chamra
,
L. M.
, and
Webb
,
R. L.
, 1993,
“Effect of Particle Size and Size Distribution on Particulate Fouling in Enhanced Tubes,”
J. Enhanced Heat Transfer
,
1
, pp.
65
75
.
17.
Izadi
,
M.
,
Aidun
,
D. K.
,
Marzocca
,
P.
, and
Lee
,
H.
, 2008,
“The Experimental Investigation of Fouling Phenomenon in Tubular Heat Exchangers by Heat Transfer Resistance Monitoring (HTRM) Method,”
Proceedings of IMECE2008
,
ASME
,
New York
.
18.
Izadi
,
M.
,
Aidun
,
D. K.
,
Marzocca
,
P.
, and
Lee
,
H.
, 2008,
“The Experimental Investigation of Fouling Phenomenon in Heat Exchangers by Heat Transfer Resistance Monitoring (HTRM) Method,”
Proceedings of IMECE2009
,
ASME
,
New York
.
19.
Somerscales
,
E. F. C.
, 1997,
“Fundamentals of Corrosion Fouling,”
Exp. Therm. Fluid Sci.
,
14
, pp.
335
355
.
20.
Terdtoon
,
P.
,
Coykaen
,
C.
,
Tungkum
,
S.
, and
Kraitong
,
K.
, 2000,
“Corrosion and Fouling of Tubes Used in a Thermosyphon Economizer: A Case Study of Paint Protection,”
Appl. Therm. Eng.
,
20
, pp.
791
801
.
21.
Melo
,
L. F.
, and
Bott
,
T. R.
, 1997,
“Biofouling in Water Systems,”
Exp. Therm. Fluid Sci.
,
14
, pp.
375
381
.
22.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
23.
Gnielinski
,
V.
, 1976,
“New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow,”
Int. Chem. Eng.
16
, pp.
359
368
.
24.
Rohsenaw
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
, 1998,
Handbook of Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
25.
Schlottenmier
,
D.
, 2008,
DATS™ III Fouling Monitoring System Operations Guide
,
Bridger Scientific
,
Sagamore Beach, MA
.
26.
Müller-Steinhagen
,
H.
, 2000,
Handbook of Heat Exchanger Fouling; Mitigation and Cleaning Technologies
,
Institution of Chemical Engineers
,
Rugby, UK
.
28.
Green
,
D.
, and
Perry
,
R.
, 1997,
Perry’s Chemical Engineers’ Handbook
, 8th ed.,
McGraw-Hill
,
New York
.
29.
Tuthill
,
A. H.
, 1987,
“Guidelines for the Use of Copper Alloys in Seawater,”
Mater. Perform.
,
26
(
9
), pp.
12
22
.
30.
Patnaik
,
P.
, 2003,
Handbook of Inorganic Chemicals
,
McGraw-Hill
,
New York
.
32.
Kear
,
G.
,
Barker
,
B. D.
, and
Walsh
,
F. C.
, 2004,
“Electrochemical Corrosion of Unalloyed Copper in Chloride Media
A Critical Review,”
Corros. Sci.
,
46
, pp.
109
135
.
33.
Kear
,
G.
,
Barker
,
B. D.
, and
Walsh
,
F. C.
, 2004,
“Electrochemical Corrosion Behavior of 90–10 Cu–Ni Alloy in Chloride-Based Electrolytes,”
J. Appl. Electrochem.
,
34
, pp.
659
669
.
34.
Masterton
,
W. L.
, and
Hurley
,
C. N.
, 2006,
Chemistry, Principles and Reactions
, 5th ed.,
Thomson Brooks/Cole
,
Belmont, CA
.
35.
Taylor
,
J. R.
, 1982,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
Sausalito, CA
.
36.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1998,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
New York
.
37.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
, 1985,
“ASME Measurement Uncertainty,”
J. Fluids Eng.
,
107
, pp.
161
164
.
You do not currently have access to this content.