Tissue engineering requires complex three-dimensional scaffolds that mimic natural extracellular matrix function. A wide variety of techniques have been developed to create both fibrous and porous scaffolds out of polymers, ceramics, metals, and composite materials. Existing techniques include fiber bonding, electrospinning, emulsion freeze drying, solvent casting/particulate leaching, gas foaming/particulate leaching, high pressure processing, and thermally induced phase separation. Critical scaffold properties, including pore size, porosity, pore interconnectivity, and mechanical integrity, are determined by thermal processing parameters in many of these techniques. In this review, each tissue engineering scaffold preparation method is discussed, including recent advancements as well as advantages and disadvantages of the technique, with a particular emphasis placed on thermal parameters. Improvements on these existing techniques, as well as new thermal processing methods for tissue engineering scaffolds, will be needed to provide tissue engineers with finer control over tissue and organ development.

1.
Skalak
,
R.
, and
Fox
,
C. F.
, 1988,
Tissue Engineering: Proceedings of a Workshop
, Granlibakken, Lake Tahoe, CA, Feb. 26–29.
2.
Marcacci
,
M.
,
Berruto
,
M.
,
Brocchetta
,
D.
,
Delcogliano
,
A.
,
Ghinelli
,
D.
,
Gobbi
,
A.
,
Kon
,
E.
,
Pederzini
,
L.
,
Rosa
,
D.
,
Sacchetti
,
G. L.
,
Stefani
,
G.
, and
Zanasi
,
S.
, 2005, “
Articular Cartilage Engineering With Hyalograft (R) C—3-Year Clinical Results
,”
Clin. Orthop. Relat. Res.
0009-921X,
435
, pp.
96
105
.
3.
MacNeil
,
S.
, 2007, “
Progress and Opportunities for Tissue-Engineered Skin
,”
Nature (London)
0028-0836,
445
(
7130
), pp.
874
880
.
4.
Atala
,
A.
,
Bauer
,
S. B.
,
Soker
,
S.
,
Yoo
,
J. J.
, and
Retik
,
A. B.
, 2006, “
Tissue-Engineered Autologous Bladders for Patients Needing Cystoplasty
,”
Lancet
0140-6736,
367
(
9518
), pp.
1241
1246
.
5.
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, 2009, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
1523-9829,
11
, pp.
289
313
.
6.
National Science and Technology Council
, 2007, “
Advancing Tissue Science and Engineering: A Multi-Agency Strategic Plan
.”
7.
Karageorgiou
,
V.
, and
Kaplan
,
D.
, 2005, “
Porosity of 3D Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
0142-9612,
26
(
27
), pp.
5474
5491
.
8.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
9.
Yang
,
S.
,
Leong
,
K. -F.
,
Du
,
Z.
, and
Chua
,
C. -K.
, 2001, “
The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors
,”
Tissue Eng.
1076-3279,
7
(
6
), pp.
679
689
.
10.
Habraken
,
W. J. E. M.
,
Wolke
,
J. G. C.
, and
Jansen
,
J. A.
, 2007, “
Ceramic Composites as Matrices and Scaffolds for Drug Delivery in Tissue Engineering
,”
Adv. Drug Delivery Rev.
0169-409X,
59
(
4–5
), pp.
234
248
.
11.
Chung
,
H. J.
, and
Park
,
T. G.
, 2007, “
Surface Engineered and Drug Releasing Pre-Fabricated Scaffolds for Tissue Engineering
,”
Adv. Drug Delivery Rev.
0169-409X,
59
(
4–5
), pp.
249
262
.
12.
Tuzlakoglu
,
K.
, and
Reis
,
R. L.
, 2009, “
Biodegradable Polymeric Fiber Structures in Tissue Engineering
,”
Tissue Eng. Part B Rev.
,
15
(
1
), pp.
17
27
.
13.
Weigel
,
T.
,
Schinkel
,
G.
, and
Lendlein
,
A.
, 2006, “
Design and Preparation of Polymeric Scaffolds for Tissue Engineering
,”
Expert Review of Medical Devices
,
3
(
6
), pp.
835
851
.
14.
Drury
,
J. L.
, and
Mooney
,
D. J.
, 2003, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
0142-9612,
24
(
24
), pp.
4337
4351
.
15.
Kopeček
,
J.
, and
Yang
,
J.
, 2009, “
Peptide-Directed Self-Assembly of Hydrogels
,”
Acta Biomater.
1742-7061,
5
(
3
), pp.
805
816
.
16.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
, 2004, “
Computer-Aided Tissue Engineering: Overview, Scope, and Challenges
,”
Biotechnol. Appl. Biochem.
0885-4513,
39
, pp.
29
47
.
17.
Yang
,
S.
,
Leong
,
K. -F.
,
Du
,
Z.
, and
Chua
,
C. -K.
, 2002, “
The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques
,”
Tissue Eng.
1076-3279,
8
(
1
), pp.
1
11
.
18.
Curtis
,
A. S.
, and
Wilkinson
,
C. D.
, 1998, “
Reactions of Cells to Topography
,”
J. Biomater. Sci. Polym. Ed.
,
9
(
12
), pp.
1313
1329
.
19.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
,
Biron
,
R. J.
,
Eagles
,
D. B.
,
Lesnoy
,
D. C.
,
Barlow
,
S. K.
, and
Langer
,
R.
, 1994, “
Biodegradable Polymer Scaffolds for Tissue Engineering
,”
Biotechnology (N. Y.)
,
12
(
7
), pp.
689
693
.
20.
Mikos
,
A. G.
,
Bao
,
Y.
,
Cima
,
L. G.
,
Ingber
,
D. E.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1993, “
Preparation of Poly(Glycolic Acid) Bonded Fiber Structures for Cell Attachment and Transplantation
,”
J. Biomed. Mater. Res.
0021-9304,
27
(
2
), pp.
183
189
.
21.
Kim
,
B. S.
, and
Mooney
,
D. J.
, 1998, “
Engineering Smooth Muscle Tissue With a Predefined Structure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
2
), pp.
322
332
.
22.
Gomes
,
M. E.
,
Holtorf
,
H. L.
,
Reis
,
R. L.
, and
Mikos
,
A. G.
, 2006, “
Influence of the Porosity of Starch-Based Fiber Mesh Scaffolds on the Proliferation and Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured in a Flow Perfusion Bioreactor
,”
Tissue Eng.
1076-3279,
12
(
4
), pp.
801
809
.
23.
Gomes
,
M. E.
,
Sikavitsas
,
V. I.
,
Behravesh
,
E.
,
Reis
,
R. L.
, and
Mikos
,
A. G.
, 2003, “
Effect of Flow Perfusion on the Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured on Starch-Based Three-Dimensional Scaffolds
,”
J. Biomed. Mater. Res. A
,
67
(
1
), pp.
87
95
.
24.
Lee
,
S. J.
,
Oh
,
S. H.
,
Liu
,
J.
,
Soker
,
S.
,
Atala
,
A.
, and
Yoo
,
J. J.
, 2008, “
The Use of Thermal Treatments to Enhance the Mechanical Properties of Electrospun Poly(ε-Caprolactone) Scaffolds
,”
Biomaterials
0142-9612,
29
(
10
), pp.
1422
1430
.
25.
Murugan
,
R.
,
Huang
,
Z. M.
,
Yang
,
F.
, and
Ramakrishna
,
S.
, 2007, “
Nanofibrous Scaffold Engineering Using Electrospinning
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
(
12
), pp.
4595
4603
.
26.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, 2002, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
60
(
4
), pp.
613
621
.
27.
Yoshimoto
,
H.
,
Shin
,
Y. M.
,
Terai
,
H.
, and
Vacanti
,
J. P.
, 2003, “
A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
24
(
12
), pp.
2077
2082
.
28.
Li
,
M.
,
Mondrinos
,
M. J.
,
Gandhi
,
M. R.
,
Ko
,
F. K.
,
Weiss
,
A. S.
, and
Lelkes
,
P. I.
, 2005, “
Electrospun Protein Fibers as Matrices for Tissue Engineering
,”
Biomaterials
0142-9612,
26
(
30
), pp.
5999
6008
.
29.
Kenawy
,
E. -R.
,
Layman
,
J. M.
,
Watkins
,
J. R.
,
Bowlin
,
G. L.
,
Matthews
,
J. A.
,
Simpson
,
D. G.
, and
Wnek
,
G. E.
, 2003, “
Electrospinning of Poly(Ethylene-co-Vinyl Alcohol) Fibers
,”
Biomaterials
0142-9612,
24
(
6
), pp.
907
913
.
30.
Wnek
,
G. E.
,
Carr
,
M. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
, 2003, “
Electrospinning of Nanofiber Fibrinogen Structures
,”
Nano Lett.
1530-6984,
3
(
2
), pp.
213
216
.
31.
Min
,
B. -M.
,
Lee
,
G.
,
Kim
,
S. H.
,
Nam
,
Y. S.
,
Lee
,
T. S.
, and
Park
,
W. H.
, 2004, “
Electrospinning of Silk Fibroin Nanofibers and Its Effect on the Adhesion and Spreading of Normal Human Keratinocytes and Fibroblasts In Vitro
,”
Biomaterials
0142-9612,
25
(
7–8
), pp.
1289
1297
.
32.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
, 2002, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
1525-7797,
3
(
2
), pp.
232
238
.
33.
Noh
,
H. K.
,
Lee
,
S. W.
,
Kim
,
J. -M.
,
Oh
,
J. -E.
,
Kim
,
K. -H.
,
Chung
,
C. -P.
,
Choi
,
S. -C.
,
Park
,
W. H.
, and
Min
,
B. -M.
, 2006, “
Electrospinning of Chitin Nanofibers: Degradation Behavior and Cellular Response to Normal Human Keratinocytes and Fibroblasts
,”
Biomaterials
0142-9612,
27
(
21
), pp.
3934
3944
.
34.
Bhattarai
,
N.
,
Edmondson
,
D.
,
Veiseh
,
O.
,
Matsen
,
F. A.
, and
Zhang
,
M.
, 2005, “
Electrospun Chitosan-Based Nanofibers and Their Cellular Compatibility
,”
Biomaterials
0142-9612,
26
(
31
), pp.
6176
6184
.
35.
Li
,
M.
,
Mondrinos
,
M. J.
,
Chen
,
X.
,
Gandhi
,
M. R.
,
Ko
,
F. K.
, and
Lelkes
,
P. I.
, 2006, “
Co-Electrospun Poly(Lactide-co-Glycolide), Gelatin, and Elastin Blends for Tissue Engineering Scaffolds
,”
J. Biomed. Mater. Res. Part A
1549-3296,
79
(
4
), pp.
963
973
.
36.
Zhou
,
H. J.
,
Green
,
T. B.
, and
Joo
,
Y. L.
, 2006, “
The Thermal Effects on Electrospinning of Polylactic Acid Melts
,”
Polymer
0032-3861,
47
(
21
), pp.
7497
7505
.
37.
Dalton
,
P. D.
,
Lleixa Calvet
,
J.
,
Mourran
,
A.
,
Klee
,
D.
, and
Möller
,
M.
, 2006, “
Melt Electrospinning of Poly-(Ethylene Glycol-Block-Epsilon-Caprolactone)
,”
Biotechnol. J.
,
1
(
9
), pp.
998
1006
.
38.
Sill
,
T. J.
, and
von Recum
,
H. A.
, 2008, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
0142-9612,
29
(
13
), pp.
1989
2006
.
39.
Zong
,
X.
,
Ran
,
S.
,
Fang
,
D.
,
Hsiao
,
B. S.
, and
Chu
,
B.
, 2003, “
Control of Structure, Morphology, and Property in Electrospun Poly(Glycolide-co-Lactide) Non-Woven Membranes via Post-Draw Treatments
,”
Polymer
0032-3861,
44
(
17
), pp.
4959
4967
.
40.
Xu
,
C. Y.
,
Inai
,
R.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2004, “
Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering
,”
Biomaterials
0142-9612,
25
(
5
), pp.
877
886
.
41.
Sun
,
Z. C.
,
Zussman
,
E.
,
Yarin
,
A. L.
,
Wendorff
,
J. H.
, and
Greiner
,
A.
, 2003, “
Compound Core-Shell Polymer Nanofibers by Co-Electrospinning
,”
Adv. Mater.
0935-9648,
15
(
22
), pp.
1929
1932
.
42.
Kidoaki
,
S.
,
Kwon
,
I. K.
, and
Matsuda
,
T.
, 2005, “
Mesoscopic Spatial Designs of Nano- and Microfiber Meshes for Tissue-Engineering Matrix and Scaffold Based on Newly Devised Multilayering and Mixing Electrospinning Techniques
,”
Biomaterials
0142-9612,
26
(
1
), pp.
37
46
.
43.
Lee
,
Y. H.
,
Lee
,
J. H.
,
An
,
I. -G.
,
Kim
,
C.
,
Lee
,
D. S.
,
Lee
,
Y. K.
, and
Nam
,
J. -D.
, 2005, “
Electrospun Dual-Porosity Structure and Biodegradation Morphology of Montmorillonite Reinforced PLLA Nanocomposite Scaffolds
,”
Biomaterials
0142-9612,
26
(
16
), pp.
3165
3172
.
44.
Kim
,
T. G.
,
Chung
,
H. J.
, and
Park
,
T. G.
, 2008, “
Macroporous and Nanofibrous Hyaluronic Acid/Collagen Hybrid Scaffold Fabricated by Concurrent Electrospinning and Deposition/Leaching of Salt Particles
,”
Acta Biomater.
1742-7061,
4
(
6
), pp.
1611
1619
.
45.
Park
,
S. H.
,
Kim
,
T. G.
,
Kim
,
H. C.
,
Yang
,
D. -Y.
, and
Park
,
T. G.
, 2008, “
Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration
,”
Acta Biomater.
1742-7061,
4
(
5
), pp.
1198
1207
.
46.
Chua
,
K. -N.
,
Lim
,
W. -S.
,
Zhang
,
P.
,
Lu
,
H.
,
Wen
,
J.
,
Ramakrishna
,
S.
,
Leong
,
K. W.
, and
Mao
,
H. -Q.
, 2005, “
Stable Immobilization of Rat Hepatocyte Spheroids on Galactosylated Nanofiber Scaffold
,”
Biomaterials
0142-9612,
26
(
15
), pp.
2537
2547
.
47.
Ma
,
Z.
,
Kotaki
,
M.
,
Yong
,
T.
,
He
,
W.
, and
Ramakrishna
,
S.
, 2005, “
Surface Engineering of Electrospun Polyethylene Terephthalate (PET) Nanofibers Towards Development of a New Material for Blood Vessel Engineering
,”
Biomaterials
0142-9612,
26
(
15
), pp.
2527
2536
.
48.
Cima
,
L. G.
,
Vacanti
,
J. P.
,
Vacanti
,
C.
,
Ingber
,
D.
,
Mooney
,
D.
, and
Langer
,
R.
, 1991, “
Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates
,”
J. Biomech. Eng.
0148-0731,
113
(
2
), pp.
143
151
.
49.
Whang
,
K.
,
Thomas
,
C. H.
,
Healy
,
K. E.
, and
Nuber
,
G.
, 1995, “
A Novel Method to Fabricate Bioabsorbable Scaffolds
,”
Polymer
0032-3861,
36
(
4
), pp.
837
842
.
50.
Whang
,
K.
,
Healy
,
K. E.
,
Elenz
,
D. R.
,
Nam
,
E. K.
,
Tsai
,
D. C.
,
Thomas
,
C. H.
,
Nuber
,
G. W.
,
Glorieux
,
F. H.
,
Travers
,
R.
, and
Sprague
,
S. M.
, 1999, “
Engineering Bone Regeneration With Bioabsorbable Scaffolds With Novel Microarchitecture
,”
Tissue Eng.
1076-3279,
5
(
1
), pp.
35
51
.
51.
Whang
,
K.
,
Goldstick
,
T. K.
, and
Healy
,
K. E.
, 2000, “
A Biodegradable Polymer Scaffold for Delivery of Osteotropic Factors
,”
Biomaterials
0142-9612,
21
(
24
), pp.
2545
2551
.
52.
Baker
,
S. C.
,
Rohman
,
G.
,
Southgate
,
J.
, and
Cameron
,
N. R.
, 2009, “
The Relationship Between the Mechanical Properties and Cell Behaviour on PLGA and PCL Scaffolds for Bladder Tissue Engineering
,”
Biomaterials
0142-9612,
30
(
7
), pp.
1321
1328
.
53.
Sultana
,
N.
, and
Wang
,
M.
, 2008, “
Fabrication of HA/PHBV Composite Scaffolds Through the Emulsion Freezing/Freeze-Drying Process and Characterisation of the Scaffolds
,”
J. Mater. Sci. Mater. Med.
,
19
(
7
), pp.
2555
2561
.
54.
Spiller
,
K. L.
,
Laurencin
,
S. J.
,
Charlton
,
D.
,
Maher
,
S. A.
, and
Lowman
,
A. M.
, 2008, “
Superporous Hydrogels for Cartilage Repair: Evaluation of the Morphological and Mechanical Properties
,”
Acta Biomater.
1742-7061,
4
(
1
), pp.
17
25
.
55.
Mikos
,
A. G.
,
Thorsen
,
A. J.
,
Czerwonka
,
L. A.
,
Bao
,
Y.
,
Langer
,
R.
,
Winslow
,
D. N.
, and
Vacanti
,
J. P.
, 1994, “
Preparation and Characterization of Poly(L-Lactic Acid) Foams
,”
Polymer
0032-3861,
35
(
5
), pp.
1068
1077
.
56.
Mikos
,
A. G.
,
Sarakinos
,
G.
,
Leite
,
S. M.
,
Vacant
,
J. P.
, and
Langer
,
R.
, 1993, “
Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering
,”
Biomaterials
0142-9612,
14
(
5
), pp.
323
330
.
57.
Shin
,
M.
,
Abukawa
,
H.
,
Troulis
,
M. J.
, and
Vacanti
,
J. P.
, 2008, “
Development of a Biodegradable Scaffold With Interconnected Pores by Heat Fusion and Its Application to Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
1549-3296,
84A
(
3
), pp.
702
709
.
58.
Lu
,
L.
,
Peter
,
S. J.
,
Lyman
,
M. D.
,
Lai
,
H. -L.
,
Leite
,
S. M.
,
Tamada
,
J. A.
,
Uyama
,
S.
,
Vacanti
,
J. P.
,
Langer
,
R.
, and
Mikos
,
A. G.
, 2000, “
In Vitro and In Vivo Degradation of Porous Poly(DL-Lactic-co-Glycolic Acid) Foams
,”
Biomaterials
0142-9612,
21
(
18
), pp.
1837
1845
.
59.
Cheng
,
Z. Y.
, and
Teoh
,
S. H.
, 2004, “
Surface Modification of Ultra Thin Poly (Epsilon-Caprolactone) Films Using Acrylic Acid and Collagen
,”
Biomaterials
0142-9612,
25
(
11
), pp.
1991
2001
.
60.
Wake
,
M. C.
,
Gupta
,
P. K.
, and
Mikos
,
A. G.
, 1996, “
Fabrication of Pliable Biodegradable Polymer Foams to Engineer Soft Tissues
,”
Cell Transplant.
,
5
(
4
), pp.
465
473
.
61.
Vaquette
,
C.
,
Frochot
,
C.
,
Rahouadj
,
R.
, and
Wang
,
X.
, 2008, “
An Innovative Method to Obtain Porous PLLA Scaffolds With Highly Spherical and Interconnected Pores
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
86B
(
1
), pp.
9
17
.
62.
Ma
,
Z.
,
Gao
,
C.
,
Gong
,
Y.
, and
Shen
,
J.
, 2003, “
Paraffin Spheres as Porogen to Fabricate Poly(L-Lactic Acid) Scaffolds With Improved Cytocompatibility for Cartilage Tissue Engineering
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
67B
(
1
), pp.
610
617
.
63.
Thomson
,
R. C.
,
Yaszemski
,
M. J.
,
Powers
,
J. M.
, and
Mikos
,
A. G.
, 1996, “
Fabrication of Biodegradable Polymer Scaffolds to Engineer Trabecular Bone
,”
J. Biomater. Sci. Polym. Ed.
,
7
(
1
), pp.
23
38
.
64.
Zhang
,
P.
,
Hong
,
Z.
,
Yu
,
T.
,
Chen
,
X.
, and
Jing
,
X.
, 2009, “
In Vivo Mineralization and Osteogenesis of Nanocomposite Scaffold of Poly(Lactide-co-Glycolide) and Hydroxyapatite Surface-Grafted With Poly(L-Lactide)
,”
Biomaterials
0142-9612,
30
(
1
), pp.
58
70
.
65.
Murphy
,
W. L.
,
Dennis
,
R. G.
,
Kileny
,
J. L.
, and
Mooney
,
D. J.
, 2002, “
Salt Fusion: An Approach to Improve Pore Interconnectivity Within Tissue Engineering Scaffolds
,”
Tissue Eng.
1076-3279,
8
(
1
), pp.
43
52
.
66.
Ma
,
P. X.
, and
Choi
,
J. W.
, 2001, “
Biodegradable Polymer Scaffolds With Well-Defined Interconnected Spherical Pore Network
,”
Tissue Eng.
1076-3279,
7
(
1
), pp.
23
33
.
67.
Gross
,
K. A.
, and
Rodriguez-Lorenzo
,
L. M.
, 2004, “
Biodegradable Composite Scaffolds With an Interconnected Spherical Network for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
25
(
20
), pp.
4955
4962
.
68.
Pamula
,
E.
,
Filova
,
E.
,
Bacakova
,
L.
,
Lisa
,
V.
, and
Adamczyk
,
D.
, 2009, “
Resorbable Polymeric Scaffolds for Bone Tissue Engineering: The Influence of Their Microstructure on the Growth of Human Osteoblast-Like Mg 63 Cells
,”
J. Biomed. Mater. Res. Part A
1549-3296,
89A
(
2
), pp.
432
443
.
69.
Widmer
,
M. S.
,
Gupta
,
P. K.
,
Lu
,
L. C.
,
Meszlenyi
,
R. K.
,
Evans
,
G. R. D.
,
Brandt
,
K.
,
Savel
,
T.
,
Gurlek
,
A.
,
Patrick
,
C. W.
, and
Mikos
,
A. G.
, 1998, “
Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration
,”
Biomaterials
0142-9612,
19
(
21
), pp.
1945
1955
.
70.
Nam
,
Y. S.
,
Yoon
,
J. J.
, and
Park
,
T. G.
, 2000, “
A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive
,”
J. Biomed. Mater. Res.
0021-9304,
53
(
1
), pp.
1
7
.
71.
Yoon
,
J. J.
, and
Park
,
T. G.
, 2001, “
Degradation Behaviors of Biodegradable Macroporous Scaffolds Prepared by Gas Foaming of Effervescent Salts
,”
J. Biomed. Mater. Res.
0021-9304,
55
(
3
), pp.
401
408
.
72.
Yoo
,
H. S.
,
Lee
,
E. A.
,
Yoon
,
J. J.
, and
Park
,
T. G.
, 2005, “
Hyaluronic Acid Modified Biodegradable Scaffolds for Cartilage Tissue Engineering
,”
Biomaterials
0142-9612,
26
(
14
), pp.
1925
1933
.
73.
Ju
,
Y. M.
,
Park
,
K.
,
Son
,
J. S.
,
Kim
,
J. -J.
,
Rhie
,
J. -W.
, and
Han
,
D. K.
, 2008, “
Beneficial Effect of Hydrophilized Porous Polymer Scaffolds in Tissue-Engineered Cartilage Formation
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
85B
(
1
), pp.
252
260
.
74.
Kim
,
T. K.
,
Yoon
,
J. J.
,
Lee
,
D. S.
, and
Park
,
T. G.
, 2006, “
Gas Foamed Open Porous Biodegradable Polymeric Microspheres
,”
Biomaterials
0142-9612,
27
(
2
), pp.
152
159
.
75.
Almirall
,
A.
,
Larrecq
,
G.
,
Delgado
,
J. A.
,
Martinez
,
S.
,
Planell
,
J. A.
, and
Ginebra
,
M. P.
, 2004, “
Fabrication of Low Temperature Macroporous Hydroxyapatite Scaffolds by Foaming and Hydrolysis of an α-TCP Paste
,”
Biomaterials
0142-9612,
25
(
17
), pp.
3671
3680
.
76.
Kim
,
C. W.
,
Talac
,
R.
,
Lu
,
L.
,
Moore
,
M. J.
,
Currier
,
B. L.
, and
Yaszemski
,
M. J.
, 2008, “
Characterization of Porous Injectable Poly-(Propylene Fumarate)-Based Bone Graft Substitute
,”
J. Biomed. Mater. Res. Part A
1549-3296,
85A
(
4
), pp.
1114
1119
.
77.
Goel
,
S. K.
, and
Beckman
,
E. J.
, 1994, “
Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nucleation
,”
Polym. Eng. Sci.
0032-3888,
34
(
14
), pp.
1137
1147
.
78.
Goel
,
S. K.
, and
Beckman
,
E. J.
, 1994, “
Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. II: Cell Growth and Skin Formation
,”
Polym. Eng. Sci.
0032-3888,
34
(
14
), pp.
1148
1156
.
79.
Mooney
,
D. J.
,
Baldwin
,
D. F.
,
Suh
,
N. P.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1996, “
Novel Approach to Fabricate Porous Sponges of Poly(D,L-Lactic-co-Glycolic Acid) Without the Use of Organic Solvents
,”
Biomaterials
0142-9612,
17
(
14
), pp.
1417
1422
.
80.
Singh
,
L.
,
Kumar
,
V.
, and
Ratner
,
B. D.
, 2004, “
Generation of Porous Microcellular 85/15 Poly(DL-Lactide-co-Glycolide) Foams for Biomedical Applications
,”
Biomaterials
0142-9612,
25
(
13
), pp.
2611
2617
.
81.
Vega-González
,
A.
,
Subra-Paternault
,
P.
,
López-Periago
,
A. M.
,
García-González
,
C. A.
, and
Domingo
,
C.
, 2008, “
Supercritical CO2 Antisolvent Precipitation of Polymer Networks of l-PLA, PMMA, and PMMA/PCL Blends for Biomedical Applications
,”
Eur. Polym. J.
0014-3057,
44
(
4
), pp.
1081
1094
.
82.
Sheridan
,
M. H.
,
Shea
,
L. D.
,
Peters
,
M. C.
, and
Mooney
,
D. J.
, 2000, “
Bioadsorbable Polymer Scaffolds for Tissue Engineering Capable of Sustained Growth Factor Delivery
,”
J. Controlled Release
0168-3659,
64
(
1–3
), pp.
91
102
.
83.
Barry
,
J. J. A.
,
Silva
,
M. M. C. G.
,
Cartmell
,
S. H.
,
Guldberg
,
R. E.
,
Scotchford
,
C. A.
, and
Howdle
,
S. M.
, 2006, “
Porous Methacrylate Tissue Engineering Scaffolds: Using Carbon Dioxide to Control Porosity and Interconnectivity
,”
J. Mater. Sci.
0022-2461,
41
(
13
), pp.
4197
4204
.
84.
Mathieu
,
L. M.
,
Mueller
,
T. L.
,
Bourban
,
P. E.
,
Pioletti
,
D. P.
,
Muller
,
R.
, and
Manson
,
J. A. E.
, 2006, “
Architecture and Properties of Anisotropic Polymer Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
27
(
6
), pp.
905
916
.
85.
Salerno
,
A.
,
Netti
,
P. A.
,
Di Maio
,
E.
, and
Iannace
,
S.
, 2009, “
Engineering of Foamed Structures for Biomedical Application
,”
J. Cell. Plast.
0021-955X,
45
(
2
), pp.
103
117
.
86.
Harris
,
L. D.
,
Kim
,
B. S.
, and
Mooney
,
D. J.
, 1998, “
Open Pore Biodegradable Matrices Formed With Gas Foaming
,”
J. Biomed. Mater. Res.
0021-9304,
42
(
3
), pp.
396
402
.
87.
Petri Aronin
,
C. E.
,
Cooper
,
J. A.
,
Sefcik
,
L. S.
,
Tholpady
,
S. S.
,
Ogle
,
R. C.
, and
Botchwey
,
E. A.
, 2008, “
Osteogenic Differentiation of Dura Mater Stem Cells Cultured In Vitro on Three-Dimensional Porous Scaffolds of Poly(ε-Caprolactone) Fabricated via Co-Extrusion and Gas Foaming
,”
Acta Biomater.
1742-7061,
4
(
5
), pp.
1187
1197
.
88.
Barry
,
J. J. A.
,
Evseev
,
A. V.
,
Markov
,
M. A.
,
Upton
,
C. E.
,
Scotchford
,
C. A.
,
Popov
,
V. K.
, and
Howdle
,
S. M.
, 2008, “
In Vitro Study of Hydroxyapatite-Based Photocurable Polymer Composites Prepared by Laser Stereolithography and Supercritical Fluid Extraction
,”
Acta Biomater.
1742-7061,
4
(
6
), pp.
1603
1610
.
89.
Yang
,
X. B. B.
,
Whitaker
,
M. J.
,
Sebald
,
W.
,
Clarke
,
N.
,
Howdle
,
S. M.
,
Shakesheff
,
K. M.
, and
Oreffo
,
R. O. C.
, 2004, “
Human Osteoprogenitor Bone Formation Using Encapsulated Bone Morphogenetic Protein 2 in Porous Polymer Scaffolds
,”
Tissue Eng.
1076-3279,
10
(
7–8
), pp.
1037
1045
.
90.
Kanczler
,
J. M.
,
Barry
,
J.
,
Ginty
,
P.
,
Howdle
,
S. M.
,
Shakesheff
,
K. M.
, and
Oreffo
,
R. O. C.
, 2007, “
Supercritical Carbon Dioxide Generated Vascular Endothelial Growth Factor Encapsulated Poly(DL-Lactic Acid) Scaffolds Induce Angiogenesis In Vitro
,”
Biochem. Biophys. Res. Commun.
0006-291X,
352
(
1
), pp.
135
141
.
91.
Duarte
,
A. R. C.
,
Mano
,
J. F.
, and
Reis
,
R. L.
, 2009, “
Preparation of Chitosan Scaffolds Loaded With Dexamethasone for Tissue Engineering Applications Using Supercritical Fluid Technology
,”
Eur. Polym. J.
0014-3057,
45
(
1
), pp.
141
148
.
92.
Vezzu
,
K.
,
Betto
,
V.
, and
Elvassore
,
N.
, 2008, “
High-Pressure Gas-Assisted Absorption of Protein Within Biopolymeric Micro-Patterned Membrane
,”
Biochem. Eng. J.
1369-703X,
40
(
2
), pp.
241
248
.
93.
Montjovent
,
M.
,
Mathieu
,
L.
,
Hinz
,
B.
,
Applegate
,
L. L.
,
Bourban
,
P.
,
Zambelli
,
P.
,
Manson
,
J.
, and
Pioletti
,
D. P.
, 2005, “
Human Fetal Bone Cells Associated With Bioresorbable PLA Composite Scaffolds for Tissue Engineering
,”
Bone
,
36
, pp.
S278
S279
.
94.
Georgiou
,
G.
,
Mathieu
,
L.
,
Pioletti
,
D. P.
,
Bourban
,
P. E.
,
Manson
,
J. -A. E.
,
Knowles
,
J. C.
, and
Nazhat
,
S. N.
, 2007, “
Polylactic Acid-Phosphate Glass Composite Foams as Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
80B
(
2
), pp.
322
331
.
95.
Kim
,
S. S.
,
Park
,
M. S.
,
Jeon
,
O.
,
Choi
,
C. Y.
, and
Kim
,
B. S.
, 2006, “
Poly(Lactide-co-Glycolide)/Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
27
(
8
), pp.
1399
1409
.
96.
Wang
,
H.
, and
Li
,
W.
, 2008, “
Selective Ultrasonic Foaming of Polymer for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
2
), pp.
021004
.
97.
Mather
,
M. L.
,
Crowe
,
J. A.
,
Morgan
,
S. P.
,
White
,
L. J.
,
Kalashnikov
,
A. N.
,
Ivchenko
,
V. G.
,
Howdle
,
S. M.
, and
Shakesheff
,
K. M.
, 2008, “
Ultrasonic Monitoring of Foamed Polymeric Tissue Scaffold Fabrication
,”
J. Mater. Sci. Mater. Med.
,
19
(
9
), pp.
3071
3080
.
98.
Lo
,
H.
,
Kadiyala
,
S.
,
Guggino
,
S. E.
, and
Leong
,
K. W.
, 1996, “
Poly(L-Lactic Acid) Foams With Cell Seeding and Controlled-Release Capacity
,”
J. Biomed. Mater. Res.
0021-9304,
30
(
4
), pp.
475
484
.
99.
Guan
,
J. J.
,
Fujimoto
,
K. L.
,
Sacks
,
M. S.
, and
Wagner
,
W. R.
, 2005, “
Preparation and Characterization of Highly Porous, Biodegradable Polyurethane Scaffolds for Soft Tissue Applications
,”
Biomaterials
0142-9612,
26
(
18
), pp.
3961
3971
.
100.
Yang
,
F.
,
Qu
,
X.
,
Cui
,
W. J.
,
Bei
,
J. Z.
,
Yu
,
F. Y.
,
Lu
,
S. B.
, and
Wang
,
S. G.
, 2006, “
Manufacturing and Morphology Structure of Polylactide-Type Microtubules Orientation-Structured Scaffolds
,”
Biomaterials
0142-9612,
27
(
28
), pp.
4923
4933
.
101.
Nam
,
Y. S.
, and
Park
,
T. G.
, 1999, “
Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation
,”
J. Biomed. Mater. Res.
0021-9304,
47
(
1
), pp.
8
17
.
102.
Schugens
,
Ch.
,
Maquet
,
V.
,
Grandfils
,
C.
,
Jerome
,
R.
, and
Teyssie
,
Ph.
, 1996, “
Biodegradable and Macroporous Polylactide Implants for Cell Transplantation. 1. Preparation of Macroporous Polylactide Supports by Solid-Liquid Phase Separation
,”
Polymer
0032-3861,
37
(
6
), pp.
1027
1038
.
103.
Schugens
,
Ch.
,
Maquet
,
V.
,
Grandfils
,
Ch.
,
Jerome
,
R.
, and
Teyssie
,
Ph.
, 1996, “
Polylactide Macroporous Biodegradable Implants for Cell Transplantation. II. Preparation of Polylactide Foams by Liquid-Liquid Phase Separation
,”
J. Biomed. Mater. Res.
0021-9304,
30
(
4
), pp.
449
461
.
104.
Nam
,
Y. S.
, and
Park
,
T. G.
, 1999, “
Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Method
,”
Biomaterials
0142-9612,
20
(
19
), pp.
1783
1790
.
105.
Carfi Pavia
,
F.
,
La Carrubba
,
V.
,
Piccarolo
,
S.
, and
Brucato
,
V.
, 2008, “
Polymeric Scaffolds Prepared via Thermally Induced Phase Separation: Tuning of Structure and Morphology
,”
J. Biomed. Mater. Res. Part A
1549-3296,
86A
(
2
), pp.
459
466
.
106.
Ho
,
M. -H.
,
Kuo
,
P. -Y.
,
Hsieh
,
H. -J.
,
Hsien
,
T. -Y.
,
Hou
,
L. -T.
,
Lai
,
J. -Y.
, and
Wang
,
D. -M.
, 2004, “
Preparation of Porous Scaffolds by Using Freeze-Extraction and Freeze-Gelation Methods
,”
Biomaterials
0142-9612,
25
(
1
), pp.
129
138
.
107.
Zhang
,
R.
, and
Ma
,
P. X.
, 1999, “
Poly(α-Hydroxyl Acids)/Hydroxyapatite Porous Composites for Bone-Tissue Engineering. I. Preparation and Morphology
,”
J. Biomed. Mater. Res.
0021-9304,
44
(
4
), pp.
446
455
.
108.
Wei
,
G. B.
, and
Ma
,
P. X.
, 2004, “
Structure and Properties of Nano-Hydroxyapatite/Polymer Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
25
(
19
), pp.
4749
4757
.
109.
Li
,
Z. S.
,
Ramay
,
H. R.
,
Hauch
,
K. D.
,
Xiao
,
D. M.
, and
Zhang
,
M. Q.
, 2005, “
Chitosan-Alginate Hybrid Scaffolds for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
26
(
18
), pp.
3919
3928
.
110.
Chen
,
V. J.
, and
Ma
,
P. X.
, 2004, “
Nano-Fibrous Poly(L-Lactic Acid) Scaffolds With Interconnected Spherical Macropores
,”
Biomaterials
0142-9612,
25
(
11
), pp.
2065
2073
.
111.
Liu
,
X.
,
Smith
,
L. A.
,
Hu
,
J.
, and
Ma
,
P. X.
, 2009, “
Biomimetic Nanofibrous Gelatin/Apatite Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
30
(
12
), pp.
2252
2258
.
112.
Chen
,
V. J.
,
Smith
,
L. A.
, and
Ma
,
P. X.
, 2006, “
Bone Regeneration on Computer-Designed Nano-Fibrous Scaffolds
,”
Biomaterials
0142-9612,
27
(
21
), pp.
3973
3979
.
113.
Ao
,
Q.
,
Wang
,
A.
,
Cao
,
W.
,
Zhang
,
L.
,
Kong
,
L.
,
He
,
Q.
,
Gong
,
Y.
, and
Zhang
,
X.
, 2006, “
Manufacture of Multimicrotubule Chitosan Nerve Conduits With Novel Molds and Characterization In Vitro
,”
J. Biomed. Mater. Res. Part A
1549-3296,
77A
(
1
), pp.
11
18
.
114.
Tsang
,
V. L.
, and
Bhatia
,
S. N.
, 2004, “
Three-Dimensional Tissue Fabrication
,”
Adv. Drug Delivery Rev.
0169-409X,
56
(
11
), pp.
1635
1647
.
You do not currently have access to this content.