Because of their interesting heat transfer and mechanical properties, metal foams have been proposed for several different applications, thermal and structural. This paper aims at pointing out the effective thermal fluid dynamic behavior of these new enhanced surfaces, which present high heat transfer area per unit of volume at the expense of high pressure drop. The paper presents the experimental heat transfer and pressure drop measurements relative to air flowing in forced convection through four different aluminum foams, when electrically heated. The tested aluminum foams present 5, 10, 20 and 40 PPI (pores per inch), porosity around 0.92–0.93, and 0.02 m of foam core height. The experimental heat transfer coefficients and pressure drops have been obtained by varying the air mass flow rate and the electrical power, which has been set at 25.0kWm2, 32.5kWm2, and 40.0kWm2. The results have been compared against those measured for 40 mm high samples, in order to study the effects of the foam core height on the heat transfer. Moreover, predictions from two recent models are compared with heat transfer coefficient and pressure drop experimental data. The predictions are in good agreement with experimental data.

1.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Model for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3701
3711
.
2.
Yang
,
Z.
, and
Garimella
,
S. V.
, 2010, “
Melting of Phase Change Materials With Volume Change in Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
132
(
6
), p.
062301
.
3.
Garrity
,
P. T.
,
Klausner
,
F. J.
, and
Mei
,
R.
, 2010, “
Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation
,”
ASME J. Heat Transfer
0022-1481,
132
(
12
), p.
121901
.
4.
Lin
,
Y. R.
,
Du
,
J. H.
,
Wu
,
W.
,
Chow
,
L. C.
, and
Notardonato
,
W.
, 2010, “
Experimental Study on Heat Transfer and Pressure Drop of Recuperative Heat Exchangers Using Carbon Foam
,”
ASME J. Heat Transfer
0022-1481,
132
(
9
), p.
091902
.
5.
Yang
,
J.
,
Wang
,
Q.
, and
Nakayama
,
A.
, 2010, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
0022-1481,
132
(
5
), p.
051702
.
6.
Seyf
,
H. R.
, and
Layeghi
,
M.
, 2010, “
Numerical Analysis of Convective Heat Transfer From Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
0022-1481,
132
(
7
), p.
071401
.
7.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J. C.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
(
21
), pp.
3545
3553
.
8.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
9.
Calmidi
,
V. V.
, 1998, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
10.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
, 2004, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5149
5157
.
11.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
, 2001, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1451
1454
.
12.
Kim
,
T.
,
Fuller
,
A. J.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
, 2002, “
An Experimental Study on Thermal Transport in Lightweight Metal Foams at High Reynolds Numbers
,”
Proceedings of the International Symposium of Compact Heat Exchangers
, Grenoble, France, pp.
227
232
.
13.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
, 2010, “
Heat Transfer During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
4976
4984
.
14.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2781
2789
.
15.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
16.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
0022-1481,
132
(
2
), p.
023305
.
17.
International Organization of Standard
, 1998, “
Orifice Plates, Nozzles and Venturi Tubes Inserted in Circular Cross Section Conduits Running Full
,” EN ISO 5167-1:1991/A1:1998.
18.
Cavallini
,
A.
,
Mancin
,
S.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2010, “
Air Flow in Aluminum Foam: Heat Transfer and Pressure Drops Measurements
,”
Exp. Heat Transfer
0891-6152,
23
(
1
), pp.
94
105
.
19.
Wile
,
D. D.
, 1947, “
Air Flow Measurement in the Laboratory
,”
Refrigerating Engineering, ASRE
0096-0470, June, pp.
515
521
.
20.
Mancin
,
S.
, 2008, “
Two-Phase and Single-Phase Heat Transfer and Fluid Flow Through Enhanced Surfaces and in Microgeometries
,” Ph.D. thesis, University of Padova, Padova, Italy.
21.
National Institute of Standard and Technology (NIST)
, 2002, “
Refprop Version 8.0
,” Boulder, CO.
22.
Dukhan
,
N.
,
Quinoñes-Ramos
,
P.
,
Cruz-Ruiz
,
E.
,
Reyes
,
V. -M.
, and
Scott
,
E. P.
, 2005, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-PPI Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5112
5120
.
23.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
,
New York
, Chap. 3.
24.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
, 2010, “
Pressure Drop During Air Flow in Aluminium Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
3121
3130
.
You do not currently have access to this content.