Microwave heating of a porous medium with a nonuniform porosity is numerically investigated based on a proposed numerical model. A two-dimensional variation of porosity of the medium is considered. The generalized non-Darcian model developed takes into account the presence of a solid drag and the inertial effect. The transient Maxwell’s equations are solved by using the finite difference time domain method to describe the electromagnetic field in the waveguide and medium. The temperature profile and velocity field within a medium are determined by solution of the momentum, energy, and Maxwell’s equations. The coupled nonlinear set of these equations is solved using the SIMPLE algorithm. In this work, a detailed parametric study is conducted on heat transport inside a rectangular enclosure filled with a saturated porous medium of constant or variable porosity. The numerical results agree well with the experimental data. Variations in porosity significantly affect the microwave heating process as well as the convective flow pattern driven by microwave energy.

1.
Wei
,
C. K.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1985, “
Heat and Mass Transfer in Water-Laden Sandstone: Microwave Heating
,”
AIChE J.
0001-1541,
31
(
5
), pp.
842
848
.
2.
Ni
,
H.
,
Datta
,
A. K.
, and
Torrance
,
K. E.
, 1999, “
Moisture Transport in Intensive Microwave Heating of Biomaterials: Porous Media Model
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1501
1512
.
3.
Feng
,
H.
,
Tang
,
J.
,
Cavalieri
,
R. P.
, and
Plumb
,
O. A.
, 2001, “
Heat and Mass Transport in Microwave Drying of Porous Materials in a Spouted Bed
,”
AIChE J.
0001-1541,
47
, pp.
1499
1512
.
4.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
151
161
.
5.
Dinčov
,
D. D.
,
Parrot
,
K. A.
, and
Pericleous
,
K. A.
, 2004, “
Heat and Mass Transfer in Two-Phase Porous Materials Under Intensive Microwave Heating
,”
J. Food Eng.
,
65
, pp.
403
412
.
6.
Rattanadecho
,
P.
, 2006, “
The Simulation of Microwave Heating of Wood Using a Rectangular Wave Guide: Influence of Frequency and Sample Size
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
4798
4811
.
7.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
A Numerical and Experimental Investigation of Modelling of Microwave Heating for Liquid Layers Using a Rectangular Wave Guide (Effects of Natural Convection and Dielectric Properties)
,”
Appl. Math. Model.
0307-904X,
26
, pp.
449
472
.
8.
Cha-um
,
W.
,
Rattanadecho
,
P.
, and
Pakdee
,
W.
, 2009, “
Experimental Analysis of Microwave Heating of Dielectric Materials Using a Rectangular Wave Guide (MODE: TE10) (Case Study: Water Layer and Saturated Porous Medium)
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
(
3
), pp.
472
481
.
9.
Ayappa
,
K. G.
, and
Brandon
,
S.
, 1994, “
Microwave Driven Convection in a Square Cavity
,”
AIChE J.
0001-1541,
40
(
7
), pp.
1268
1272
.
10.
Franca
,
A. S.
, and
Haghighi
,
K.
, 1996, “
Adaptive Finite Element Analysis of Microwave Driven Convection
,”
Int. Commun. Heat Mass Transfer
0735-1933,
23
(
2
), pp.
177
186
.
11.
Chatterjee
,
S.
,
Basak
,
T.
, and
Das
,
S. K.
, 2007, “
Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study
,”
J. Food Eng.
,
79
, pp.
1269
1279
.
12.
Liu
,
S.
, and
Masliyah
,
J. H.
, 1996, “
Single Fluid Flow in Porous Media
,”
Chem. Eng. Commun.
0098-6445,
148
, pp.
653
732
.
13.
Benenati
,
R. F.
, and
Brosilow
,
C. B.
, 1962, “
Void Fraction Distribution in Pack Beds
,”
AIChE J.
0001-1541,
8
, pp.
359
361
.
14.
Vafai
,
K.
, 1984, “
Convective Flow and Heat Transfer in Variable-Porosity Media
,”
J. Fluid Mech.
0022-1120,
147
, pp.
233
259
.
15.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
6
), pp.
939
954
.
16.
Khaled
,
A. -R. A.
, and
Chamkha
,
A. J.
, 2001, “
Variable Porosity and Thermal Dispersion Effects on Coupled Heat and Mass Transfer by Natural Convection From a Surface Embedded in a Non-Metallic Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
11
(
5
), pp.
413
429
.
17.
Hsiao
,
S. -W.
,
Cheng
,
P.
, and
Chen
,
C. -K.
, 1992, “
Non-Uniform Porosity and Thermal Dispersion Effects on Natural Convection About a Heated Horizontal Cylinder in an Enclosed Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
12
), pp.
3407
3418
.
18.
Sakamoto
,
H.
, and
Kulacki
,
F. A.
, 2008, “
Effective Thermal Diffusivity of Porous Media in the Wall Vicinity
,”
ASME J. Heat Transfer
0022-1481,
130
(
2
), p.
022601
.
19.
Vafai
,
K.
, 1986, “
Analysis of the Channeling Effect in Variable Porosity Media
,”
ASME J. Energy Resour. Technol.
0195-0738,
108
, pp.
131
139
.
20.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1998, “
Non-Darcian Convection in Cylindrical Packed Beds
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
2523
2532
.
21.
Poulikakos
,
D.
, and
Renken
,
K.
, 1987, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effects of Flow Inertia, Variable Porosity and Brinkman Friction
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
880
888
.
22.
Chai
,
Z.
, and
Guo
,
Z.
, 2007, “
Study of Electro-Osmotic Flows in Microchannels Packed With Variable Porosity Media via Lattice Boltzmann Method
,”
J. Appl. Phys.
0021-8979,
101
, p.
104913
.
23.
Akbal
,
S.
, and
Baytas
,
F.
, 2008, “
Effects of Non-Uniform Porosity on Double Diffusive Natural Convection in a Porous Cavity With Partially Permeable Wall
,”
Int. J. Therm. Sci.
1290-0729,
47
(
7
), pp.
875
885
.
24.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2001, “
Experimental and Numerical Study of Microwave Drying in Unsaturated Porous Material
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
5
), pp.
605
616
.
25.
El-Refaee
,
M. M.
,
Elsayed
,
M. M.
,
Al-Najem
,
N. M.
, and
Noor
,
A. A.
, 1998, “
Natural Convection in Partially Cooled Tilted Cavities
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
477
499
.
26.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer
,
New York
.
27.
Al-Amiri
,
A. A.
, 2002, “
Natural Convection in Porous Enclosures: The Application of the Two-Energy Equation Model
,”
Numer. Heat Transfer, Part A
1040-7782,
41
, pp.
817
834
.
28.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
29.
Nithiarasu
,
P.
,
Seetharamu
,
K. N.
, and
Sundararajan
,
T.
, 1997, “
Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3955
3967
.
30.
Chamkha
,
A. J.
,
Issa
,
C.
, and
Khanafer
,
K.
, 2002, “
Natural Convection From an Inclined Plate Embedded in a Variable Porosity Porous Medium Due to Solar Radiation
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
73
81
.
You do not currently have access to this content.