Stodola’s area-Mach number relation is one of the most widely used expressions in compressible flow analysis. From academe to aeropropulsion, it has found utility in the design and performance characterization of numerous propulsion systems; these include rockets, gas turbines, microcombustors, and microthrusters. In this study, we derive a closed-form approximation for the inverted and more commonly used solution relating performance directly to the nozzle area ratio. The inverted expression provides a computationally efficient alternative to solutions based on traditional lookup tables or root finding. Here, both subsonic and supersonic Mach numbers are obtained explicitly as a function of the area ratio and the ratio of specific heats. The corresponding recursive formulations enable us to specify the desired solution to any level of precision. In closing, a dual verification is achieved using a computational fluid dynamics simulation of a typical nozzle and through Bosley’s formal approach. The latter is intended to confirm the truncation error entailed in our approximations. In this process, both asymptotic and numerical solutions are compared for the Mach number and temperature distributions throughout the nozzle.

1.
Stodola
,
A.
, 1903,
Steam Turbines
,
Springer-Verlag
,
Berlin
.
2.
Anderson
,
J. D.
, 2001, “
History of High-Speed Flight and Its Technical Development
,”
AIAA J.
0001-1452,
39
(
5
), pp.
761
771
.
3.
Anderson
,
J. D.
, 2003,
Modern Compressible Flow With Historical Perspective
, 3rd ed.,
McGraw-Hill
,
New York
.
4.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
, 2004,
Introduction to Fluid Mechanics
, 6th ed.,
Wiley
,
New York
.
5.
Moran
,
M. J.
, and
Shapiro
,
H. N.
, 2004,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
Wiley
,
New York
.
6.
Çengel
,
Y. A.
, and
Boles
,
M. A.
, 2002,
Thermodynamics: An Engineering Approach
, 4th ed.,
McGraw-Hill
,
New York
.
7.
Sutton
,
G. P.
, 1992,
Rocket Propulsion Elements
, 6th ed.,
Wiley
,
New York
.
8.
Thakre
,
P.
, and
Yang
,
V.
, 2008, “
Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors
,”
J. Propul. Power
0748-4658,
24
(
4
), pp.
822
833
.
9.
Zhang
,
J.
,
Jackson
,
T. L.
,
Najjar
,
F. M.
, and
Buckmaster
,
J.
, 2009, “
High-Fidelity Multiphysics Simulations of Erosion in SRM Nozzles
,” AIAA Paper No. 2009-5499.
10.
Cheng
,
F.
,
Liu
,
F.
, and
Sirignano
,
W. A.
, 2007, “
Nonpremixed Combustion in an Accelerating Transonic Flow Undergoing Transition
,”
AIAA J.
0001-1452,
45
(
12
), pp.
2935
2946
.
11.
Jackson
,
T. L.
,
Najjar
,
F. M.
, and
Buckmaster
,
J.
, 2005, “
New Aluminum Agglomeration Models and Their Use in Solid-Propellant-Rocket Simulations
,”
J. Propul. Power
0748-4658,
21
(
5
), pp.
925
936
.
12.
Stewart
,
D. S.
,
Tang
,
K. C.
,
Yoo
,
S.
,
Brewster
,
Q.
, and
Kuznetsovy
,
I. R.
, 2006, “
Multi-Scale Modeling of Solid Rocket Motors: Computational Aerodynamics Methods for Stable Quasi-Steady Burning
,”
J. Propul. Power
0748-4658,
22
(
6
), pp.
1382
1388
.
13.
Najjar
,
F. M.
,
Haselbacher
,
A.
,
Ferry
,
J. P.
,
Wasistho
,
B.
,
Balachandar
,
S.
, and
Moser
,
R.
, 2003, “
Large-Scale Multiphase Large-Eddy Simulation of Flows in Solid-Rocket Motors
,” AIAA Paper No. AIAA 2003-3700.
14.
Buckmaster
,
J.
,
Jackson
,
T. L.
,
Massa
,
L.
,
Najjar
,
F. M.
, and
Wang
,
X.
, 2005, “
The Current State of Heterogeneous Propellant Combustion Modeling
,” AIAA Paper No. 2005-0360.
15.
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 2004, “
Ideas and Methods of Turbomachinery Aerodynamics: A Historical View
,”
J. Propul. Power
0748-4658,
20
(
1
), pp.
15
26
.
16.
Farokhi
,
S.
, 1988, “
Analysis of Rotor Tip Clearance Loss in Axial-Flow Turbines
,”
J. Propul. Power
0748-4658,
4
(
5
), pp.
452
457
.
17.
Schobieri
,
T.
, and
Abouelkheir
,
M.
, 1992, “
Row-by-Row Off-Design Performance Calculation Method for Turbines
,”
J. Propul. Power
0748-4658,
8
(
4
), pp.
823
828
.
18.
Boraas
,
S.
, and
Ashby
,
R. L.
, 1969, “
Installed Thrust Vector for Scarfed Nozzles
,”
J. Spacecr. Rockets
0022-4650,
6
(
12
), pp.
1410
1415
.
19.
Dosanjh
,
D. S.
, and
Das
,
I. S.
, 1988, “
Aeroacoustics of Supersonic Jet Flows From a Contoured Plug-Nozzle
,”
AIAA J.
0001-1452,
26
(
8
), pp.
924
931
.
20.
Eidelman
,
S.
,
Grossmann
,
W.
, and
Lottati
,
I.
, 1991, “
Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept
,”
J. Propul. Power
0748-4658,
7
(
6
), pp.
857
865
.
21.
Dean
,
A. J.
, 2003, “
Recent Developments in Approaches to Pulsed Detonation Propulsion
,” AIAA Paper No. 2003-4510.
22.
Camberos
,
J. A.
,
Moorhouse
,
D. J.
, and
Suchomel
,
C. F.
, 2005, “
Quantifying Irreversible Losses for Magnetohydrodynamic Flow Analysis and Design Integration
,”
J. Thermophys. Heat Transfer
0887-8722,
19
(
1
), pp.
87
94
.
23.
Bejan
,
A.
, 2003, “
Constructal Theory: Tree-Shaped Flows and Energy Systems for Aircraft
,”
J. Aircraft
,
40
(
1
), pp.
43
48
.
24.
Leach
,
T. T.
, 2005, “
Effect of Structural Heat Conduction on the Performance of Micro-Combustors and Micro-Thrusters
,” Ph.D. thesis, University of Maryland, College Park, MD.
25.
Tosin
,
M. C.
,
Granziera
,
F.
,
Gibim
,
F.
, and
Canola
,
S. T.
, 2004, “
A Solid Propellant Micro Thruster Design—A Brief Discussion About Its Viability and Applications
,” AIAA Paper No. 2004-6729.
26.
Probstein
,
R. F.
, 1957, “
Inversion of the Prandtl–Meyer Relation for Specific Heat Ratios of 5/3 and 5/4
,”
J. Aeronaut. Sci.
0095-9812,
24
(
4
), pp.
316
317
.
27.
Day
,
J. D.
, 1976, “
Hybrid Computer Inversion of the Prandtl–Meyer Function
,”
Transactions of the International Association for Mathematics and Computers in Simulation
,
18
(
4
), pp.
201
203
.
28.
Murdock
,
J.
, 1991,
Perturbations: Theory and Methods
,
Wiley
,
New York
.
29.
Bosley
,
D. L.
, 1996, “
A Technique for the Numerical Verification of Asymptotic Expansions
,”
SIAM Rev.
0036-1445,
38
(
1
), pp.
128
135
.
You do not currently have access to this content.