Experimental results for the natural convection in a rocking enclosure are presented. A square closed cavity heated from below and cooled from above periodically turns around of its horizontal symmetry central line. The oscillation amplitude was from −15 deg to 15 deg, and four time periods were employed (30 min, 60 min, 90 min, and 120 min) for three established Rayleigh numbers (, , and ). High purity glycerin was used as the working fluid, and particle image velocimetry (PIV) was employed to obtain the velocity fields. The obtained flow patterns have a strong dependence on the Rayleigh number.
Issue Section:
Natural and Mixed Convection
1.
Gebhart
, B.
, Jaluria
, Y.
, Mahajan
, R.
, and Sammakia
, B.
, 1988, Buoyancy-Induced Flows and Transport
, 1st ed., Hemisphere
, Philadelphia, PA
, Chap. 14, pp. 737
–760
.2.
Hamady
, F. J.
, Lloyd
, J. R.
, Yang
, H. Q.
, and Yang
, K. T.
, 1989, “Study of Local Natural Convection Heat Transfer in an Inclined Enclosure
,” Int. J. Heat Mass Transfer
0017-9310, 32
(9
), pp. 1697
–1708
.3.
Pallares
, J.
, Arroyo
, M. P.
, Grau
, F. X.
, and Giralt
, F.
, 2001, “Experimental Laminar Rayleigh-Bernard Convection in a Cubical Cavity at Moderate Rayleigh and Prandtl Numbers
,” Exp. Fluids
0723-4864, 31
(2
), pp. 208
–218
.4.
Newell
, M. E.
, and Schmidt
, F. W.
, 1970, “Heat Transfer by Laminar Convection Within Rectangular Enclosures
,” ASME J. Heat Transfer
0022-1481, 92
, pp. 159
–168
.5.
Yewell
, R.
, Poulikakos
, D.
, and Bejan
, A.
, 1982, “Transient Natural Convection Experiments in Shallow Enclosures
,” Trans. ASME, Ser. C: J. Heat Transfer
0022-1481, 104
, pp. 533
–538
.6.
Paolucci
, S.
, 1990, “Direct Numerical Simulation of Two-Dimensional Turbulent Natural Convection in an Enclosed Cavity
,” J. Fluid Mech.
0022-1120, 215
, pp. 229
–269
.7.
Patterson
, J. C.
, and Armfield
, S. W.
, 1990, “Transient Features of Natural Convection in a Cavity
,” J. Fluid Mech.
0022-1120, 219
, pp. 469
–497
.8.
Poujol
, F.
, Rojas
, J.
, and Ramos
, E.
, 1993, “Transient Natural Convection in a Cavity With Heat Input and a Constant Temperature Wall on Opposite Sides
,” Int. J. Heat Fluid Flow
0142-727X, 14
(4
), pp. 357
–365
.9.
Cabanillas
, R.
, 2001, “Estudio de la Transferencia de Calor en una Cavidad Bidimensional Abierta
,” Ph.D. thesis, UNAM, Mexico, D.F.10.
Lage
, J. L.
, and Bejan
, A.
, 1993, “The Resonance of Natural Convection in an Enclosure Heated Periodically From the Side
,” Int. J. Heat Mass Transfer
0017-9310, 36
(8
), pp. 2027
–2038
.11.
Hyun
, J. M.
, 1994, “Unsteady Buoyant Convection in an Enclosure
,” Adv. Heat Transfer
0065-2717, 34
, pp. 277
–320
.12.
Kwak
, H. S.
, and Hyun
, J. M.
, 1996, “Natural Convection in an Enclosure Having a Vertical Sidewall With Time-Varying Temperature
,” J. Fluid Mech.
0022-1120, 329
, pp. 65
–88
.13.
Antohe
, B. V.
, and Lage
, J. L.
, 1997, “The Prandtl Number Effect on the Optimum Heating Frequency of an Enclosure Filled With Fluid With a Saturated Porous Medium
,” Int. J. Heat Mass Transfer
0017-9310, 40
, pp. 1313
–1323
.14.
Abell
, S.
, and Hudson
, J. L.
, 1975, “An Experimental Study of Centrifugally Driven Free Convection in a Rectangular Cavity
,” Int. J. Heat Mass Transfer
0017-9310, 18
, pp. 1415
–1423
.15.
Rossby
, H. T.
, 1969, “A Study of Bénard Convection With and Without Rotation
,” J. Fluid Mech.
0022-1120, 36
(02
), pp. 309
–335
.16.
Rogers
, J. L.
, Schatz
, M. F.
, Bougie
, J. L.
, and Swift
, J. B.
, 2000, “Rayleigh-Bénard Convection in a Vertically Oscillated Fluid Layer
,” Phys. Rev. Lett.
0031-9007, 84
(1
), pp. 87
–90
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.