Sectional oblique fins are employed, in contrast to continuous fins in order to modulate the flow in microchannel heat sinks. The breakage of a continuous fin into oblique sections leads to the reinitialization of the thermal boundary layer at the leading edge of each oblique fin, effectively reducing the boundary layer thickness. This regeneration of entrance effects causes the flow to always be in a developing state, thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of the flow into adjacent main channels. The secondary flows created improve fluid mixing, which serves to further enhance heat transfer. Both numerical simulations and experimental investigations of copper-based oblique finned microchannel heat sinks demonstrated that a highly augmented and uniform heat transfer performance, relative to the conventional microchannel, is achievable with such a passive technique. The average Nusselt number, Nuave, for the copper microchannel heat sink which uses water as the working fluid can increase as much as 103%, from 11.3 to 22.9. Besides, the augmented convective heat transfer leads to a reduction in maximum temperature rise by 12.6 °C. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for a single-phase microchannel heat sink.

References

1.
Kandlikar
,
S. G.
, 2005, “
High Flux Heat Eemoval With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
26
(
8
), pp.
5
14
.
2.
Webb
,
R. L.
, and
Kim
,
N. H.
, 2005,
Principles of Enhanced Heat Transfer
,
Taylor & Francis
,
New York
, p.
108
.
3.
Li
,
J.
, and
Peterson
,
G. P.
, 2007, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2895
2904
.
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
2
, pp.
126
129
.
5.
Bejan
,
A.
, and
Errera
,
M. R.
, 2000, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3105
3118
.
6.
Pence
,
D. V.
, 2003, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(4), pp.
319
330
.
7.
Chen
,
Y.
, and
Cheng
,
P.
, 2002, “
Heat Transfer and Pressure Drop in Fractal Tree-Shaped Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2643
2648
.
8.
Chen
,
Y.
, and
Cheng
,
P.
, 2005, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
32
, pp.
931
938
.
9.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
, 2003, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1553
1562
.
10.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
, 2005, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single Phase Cooling of Computer Chips
,” 21st IEEE Semi-Therm Symposium.
11.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W. S.
,
LaBianca
,
N. C.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K. C.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R. R.
, 2007, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
30
(
2
), pp.
218
225
.
12.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2005, “
Hot-Spot Thermal Management With Flow Modulation in a Microchannel Heat Sink
,”
Proceedings of 2005 ASME IMECE: International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2005-79562.
13.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
, 2005, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1662
1674
.
14.
Xu
,
J. L.
,
Song
,
Y. X.
,
Zhang
,
W.
,
Zhang
,
H.
, and
Gan
,
Y. H.
, 2008, “
Numerical Simulations of Interrupted and Conventional Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5906
5917
.
15.
Yang
,
C. Y.
,
Yeh
,
C. T.
,
Liu
,
W. C.
, and
Yang
,
B. C.
, 2007, “
Advanced Micro-Heat Exchangers for High Heat Flux
,”
Heat Transfer Eng.
,
28
(
8
),
788
794
.
16.
Qu
,
W.
, 2008, “
Comparison of Thermal-Hydraulic Performance of Singe-Phase Micro-Pin-Fin and Micro-Channel Heat Sinks
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, I-THERM
, Orlando, FL, May 28–31, pp.
105
112
.
17.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
International Conference on Microchannels and Minichannels
, Paper No. ICMM2004-2328.
18.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
, 2009, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,”
Proceedings of 2009 ASME InterPACK
, Paper No. IPACK2009-89059.
19.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
, 2011, “
Numerical Study of Fluid Flow and Heat Transfer in the Enhanced Microchannel With Oblique Fins
,” ASME Trans. J. Heat Transfer (submitted).
20.
Suga
,
T.
and
Aoki
,
H.
, 1991, “
Numerical Study on Heat Transfer and Pressure Drop and Pressure Drop in Multilouvered Fins
”,
Proceedings of 1991 ASME/JSME Joint Thermal Engineering Conference
, Vol.
4
,
J. R.
Lloyd
and
Y.
Kurosake
, eds.,
ASME
,
New York
, pp.
361
368
.
21.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
, 2010, “
Experimental Investigation of Oblique Finned Microchannel Heat Sink
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Paper No. I-THERM 2010.
22.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
, 2010, “
Experimental Investigation of Silicon-Based Oblique Finned Microchannel Heat Sinks
,”
Proceedings of the International Heat Transfer Conference, IHTC14
, Paper No. IHTC14-23413.
23.
Incropera
,
F.
P.
and
Dewitt
,
D. P.
, 2005,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
, p.
137
.
24.
Incropera
,
F. P.
, 1999,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
, pp.
262
263
.
25.
Qu
,
W.
, 2004, Transport Phenomena in Single-Phase and Two-Phase Micro-Channel Heat Sinks, Ph.D. thesis, School of Mechanical Engineering, Purdue Univerisity, West Lafayette, IN.
26.
Todreas
,
N. E.
, and
Kazimu
,
M. S.
, 1990,
Nuclear System I
,
Hemisphere
,
New York
.
27.
Rosaguti
,
N. R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
, 2006, “
Laminar Flow and Heat Transfer in a Periodic Serpentine Channel With Semi-Circular Cross-Section
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2912
2923
.
28.
Taylor
,
J. R.
, 1982,
An Introduction to Error Analysis
,
University Science Books
,
California
.
29.
Jasperson
,
B. A.
,
Jeon
,
Y.
,
Turner
,
K. T.
,
Pfefferkorn
,
F. E.
, and
Qu
,
W.
, 2010, “
Comparison of Micro-Pin-Fin and Microchannel Heat Sinks Considering Thermal-Hydraulic Performance and Manufacturability
”,
IEEE Trans. Compon. Packag. Technol.
, Vol. ,
33
, pp.
148
160
.
30.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
, 2003, “Fluid Flow Through Microscale Fractal-Like Branching Channel Networks,”
ASME J. Fluids Eng.
,
125
(6), pp
1051
1057
.
31.
Joshi
,
H. M.
, and
Webb
,
R. L.
, 1987, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
69
84
.
You do not currently have access to this content.