We have calculated thermal conductance of graphene nanoribbons (GNRs) and their dependence on the type of ribbon edge termination (zigzag or armchair) and the width of the ribbon, which ranges from 50 Å to 50 μm. Our model incorporates the effect of edge roughness and includes edge roughness correlation functions for both types of termination. The dependence of thermal conductance on the width of the ribbons and relative contribution of different scattering mechanisms are also analyzed by means of the Green’s function approach to the edge scattering. High temperature thermal conductance of the nanoribbons was found to be 0.15 nW/K and 0.18 nW/K (corresponding to thermal conductivity, 4641 and 5266 W/mK, respectively, for 10 μm long GNRs) which is in a good agreement with the experimental results.

References

1.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nature Mater.
,
6
(
3
), pp.
183
191
.10.1038/nmat1849
2.
Rao
,
C. N. R.
,
Sood
,
A.
,
Subrahmanyam
,
K.
, and
Govindaraj
,
A.
,
2009
, “
Graphene: The New Two-Dimensional Nanomaterial
,”
Angew. Chem., Int. Ed.
,
48
(
42
), pp.
7752
7777
.10.1002/anie.200901678
3.
Castro Neto
,
A.
,
Guinea
,
F.
,
Peres
,
N.
,
Novoselov
,
K.
, and
Geim
,
A.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
, pp.
109
162
.10.1103/RevModPhys.81.109
4.
Hartnagel
,
H.
,
Katilius
,
R.
, and
Matulionis
,
A.
,
2001
,
Microwave Noise in Semiconductor Devices
,
Wiley
,
New York
.
5.
Nakada
,
K.
,
Fujita
,
M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M.
,
1996
, “
Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence
,”
Phys. Rev. B
,
54
(
24
), pp.
17954
17961
.10.1103/PhysRevB.54.17954
6.
Wang
,
Z. F.
,
Shi
,
Q. W.
,
Li
,
Q.
,
Wang
,
X.
,
Hou
,
J. G.
,
Zheng
,
H.
,
Yao
,
Y.
, and
Chen
,
J.
,
2007
, “
Z-Shaped Graphene Nanoribbon Quantum Dot Device
,”
Appl. Phys. Lett.
,
91
(
5
), p.
053109
.10.1063/1.2761266
7.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
8.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151911
.10.1063/1.2907977
9.
Ghosh
,
S.
,
Bao
,
W.
,
Nika
,
D. L.
,
Subrina
,
S.
,
Pokatilov
,
E. P.
,
Lau
,
C. N.
, and
Balandin
,
A. A.
,
2010
, “
Dimensional Crossover of Thermal Transport in Few-Layer Graphene
,”
Nature Mater.
,
9
(
7
), pp.
555
558
.10.1038/nmat2753
10.
Ghosh
,
S.
,
Nika
,
D. L.
,
Pokatilov
,
E. P.
, and
Balandin
,
A. A.
,
2009
, “
Heat Conduction in Graphene: Experimental Study and Theoretical Interpretation
,”
New J. Phys.
,
11
(
9
), p. 095012.
11.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nature Mater.
,
10
(
8
), pp.
569
581
.10.1038/nmat3064
12.
Munoz
,
E.
,
Lu
,
J.
, and
Yakobson
,
B. I.
,
2010
, “
Ballistic Thermal Conductance of Graphene Ribbons
,”
Nano Lett.
,
10
(
5
), pp.
1652
1656
.10.1021/nl904206d
13.
Wang
,
Z.
,
Xie
,
R.
,
Bui
,
C. T.
,
Liu
,
D.
,
Ni
,
X.
,
Li
,
B.
, and
Thong
,
J. T. L.
,
2011
, “
Thermal Transport in Suspended and Supported Few-Layer Graphene
,”
Nano Lett.
,
11
(
1
), pp.
113
118
.10.1021/nl102923q
14.
Ghosh
,
S.
,
Subrina
,
S.
,
Goyal
,
V.
,
Nika
,
D.
,
Pokatilov
,
E.
, and
Balandin
,
A. A.
,
2010
, “
Extraordinary Thermal Conductivity of Graphene: Possibility of Thermal Management Applications
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE
, pp.
1
5
.
15.
Zhong
,
W.-R.
,
Zhang
,
M.-P.
,
Ai
,
B.-Q.
, and
Zheng
,
D.-Q.
,
2011
, “
Chirality and Thickness-Dependent Thermal Conductivity of Few-Layer Graphene: A Molecular Dynamics Study
,”
Appl. Phys. Lett.
,
98
(
11
), p.
113107
.10.1063/1.3567415
16.
Aksamija
,
Z.
, and
Knezevic
,
I.
,
2011
, “
Lattice Thermal Conductivity of Graphene Nanoribbons: Anisotropy and Edge Roughness Scattering
,”
Appl. Phys. Lett.
,
98
(
14
), p.
141919
.10.1063/1.3569721
17.
Nika
,
D. L.
,
Ghosh
,
S.
,
Pokatilov
,
E. P.
, and
Balandin
,
A. A.
,
2009
, “
Lattice Thermal Conductivity of Graphene Flakes: Comparison With Bulk Graphite
,”
Appl. Phys. Lett.
,
94
(
20
), p.
203103
.10.1063/1.3136860
18.
Nika
,
D.
,
Pokatilov
,
E.
,
Askerov
,
A.
, and
Balandin
,
A. A.
,
2009
, “
Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering
,”
Phys. Rev. B
,
79
(
15
), p.
155413
.10.1103/PhysRevB.79.155413
19.
Mingo
,
N.
,
2003
, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
,
68
(
11
), p.
113308
.10.1103/PhysRevB.68.113308
20.
Tan
,
Z. W.
,
Wang
,
J.-S.
, and
Gan
,
C. K.
,
2011
, “
First-Principles Study of Heat Transport Properties of Graphene Nanoribbons
,”
Nano Lett.
,
11
(
1
), pp.
214
219
.10.1021/nl103508m
21.
Santamore
,
D. H.
, and
Cross
,
M. C.
,
2001
, “
Effect of Surface Roughness on the Universal Thermal Conductance
,”
Phys. Rev. B
,
63
(
18
), p.
184306
.10.1103/PhysRevB.63.184306
22.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), pp.
1
9
.
23.
Wang
,
L.
,
Zheng
,
Q.
,
Liu
,
J.
, and
Jiang
,
Q.
,
2005
, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
,
95
(
10
), pp.
2
5
.
24.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(4), pp.
783
802
.10.1088/0953-8984/14/4/312
25.
Evans
,
W. J.
,
Hu
,
L.
, and
Keblinski
,
P.
,
2010
, “
Thermal Conductivity of Graphene Ribbons From Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203112
.10.1063/1.3435465
26.
Clark
,
S. J.
,
Segall
,
M. D.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Probert
,
M. I. J.
,
Refson
,
K.
, and
Payne
,
M. C.
,
2005
, “
First Principles Methods Using CASTEP
,”
Z. Kristallogr.
,
220
(
5–6
), pp.
567
570
.10.1524/zkri.220.5.567.65075
27.
Becke
,
A. D.
,
1993
, “
Density-Functional Thermochemistry. III. The Role of Exact Exchange
,”
J. Chem. Phys.
,
98
(7), pp.
5648
5652
.10.1063/1.464913
28.
Stephens
,
P. J.
,
Devlin
,
F. J.
,
Chabalowski
,
C. F.
, and
Frisch
,
M. J.
,
1994
, “
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
,”
J. Phys. Chem.
,
98
, pp.
11623
11627
.10.1021/j100096a001
29.
Gale
,
J. D.
, and
Rohl
,
A. L.
,
2003
, “
The General Utility Lattice Program (GULP)
,”
Mol. Simul.
,
29
(
5
), pp.
291
341
.10.1080/0892702031000104887
30.
Maultzsch
,
J.
,
Reich
,
S.
,
Thomsen
,
C.
,
Requardt
,
H.
, and
Ordejón
,
P.
,
2004
, “
Phonon Dispersion in Graphite
,”
Phys. Rev. Lett.
,
92
(
7
), p.
075501
.10.1103/PhysRevLett.92.075501
31.
Gan
,
C.
, and
Srolovitz
,
D.
,
2010
, “
First-Principles Study of Graphene Edge Properties and Flake Shapes
,”
Phys. Rev. B
,
81
(
12
), p. 125445.
32.
Saito
,
R.
,
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
,
1998
,
Physical Properties of Carbon Nanotubes
, Vol.
3
,
Imperial College Press
,
London
.
33.
Ziman
,
J.
,
1960
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,
Oxford University Press
,
New York
.
34.
Yamamoto
,
T.
,
Konabe
,
S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
,
2009
, “
Crossover From Ballistic to Diffusive Thermal Transport in Carbon Nanotubes
,”
Appl. Phys. Express
,
2
(
9
), p.
095003
.10.1143/APEX.2.095003
35.
Srivastava
,
G.
,
1990
,
The Physics of Phonons
,
A. Hilger
,
London
.
You do not currently have access to this content.