Entropy generation in a velocity and temperature field is shown to be very significant in momentum and heat transfer problems. After the determination of this postprocessing quantity, many details about the physics of a problem are available. This second law analysis (SLA) is a tool for conceptual considerations, for the determination of losses, both in the velocity and the temperature field, and it helps to assess complex convective heat transfer processes. These three aspects in conjunction with entropy generation are discussed in detail and illustrated by several examples.
Issue Section:
Research Papers
References
1.
Moran
, H.
, and Shapiro
, H.
, 2003, Fundamentals of Engineering Thermodynamics
, 5th ed., John Wiley & Sons
, New York
.2.
Baehr
, H.
, and Kabelac
, S.
, 2009, Thermodynamik
, 14th ed., Springer-Verlag
, Berlin
.3.
Herwig
, H.
, and Kautz
, C.
, 2007, Technische Thermodynamik
, Pearson Studium
, München
.4.
Incropera
, F.
, DeWitt
, D.
, Bergmann
, T.
, and Lavine
, A.
, 2006, Fundamentals of Heat and Mass Transfer
, 6th ed., John Wiley & Sons
, New York
.5.
Nellis
, G.
, and Klein
, S.
, 2009, Heat Transfer
, Cambridge University Press
, Cambridge, United Kingdom
.6.
Dugdale
, J.
, 1996, Entropy and its Physical Meaning
, Taylor & Francis
, London
.7.
Atkins
, P.
, 1984, The Second Law
, Scientific American Books—W.H. Freeman and Company
, New York
.8.
Goldstein
, M.
, and Goldstein
, I.
, 1993, The Refrigerator and the Universe
, Harvard University Press
, Cambridge, MA
.9.
Falk
, G.
, and Ruppel
, W.
, 1976, Energie und Entropie
, Springer-Verlag
, Berlin
.10.
Lieb
, E.
, and Yngvason
, J.
, 2000, “A Fresh Look at Entropy and the Second Law of Thermodynamics
,” Phys. Today
, 11
, p. 106
.11.
Beretta
, G.
, Ghoniem
, A.
, and Hatsopoulos
, G.
, eds., 2008, “Meeting the Entropy Challenge
,” AIP Conference Proceedings
, Vol. 1033
.12.
Bejan
, A.
, 1977, “The Concept of Irreversibility in Heat Exchanger Design: Counter-Flow Heat Exchangers for Gas-to-Gas Applications
,” ASME J. Heat Transfer
, 99
, pp. 274
–380
. 13.
Sekulic
, D.
, 1986, “Entropy Generation in a Heat Exchanger
,” Heat Transfer Eng.
, 7
, pp. 83
–88
. 14.
Gaggioli
, R.
, 1983, “Second Law Analysis for Process and Energy Engineering
,” Efficiency and Costing, Second Laws Analysis of Processes
, American Chemical Society
, Washington, DC
.15.
Bejan
, A.
, 1979, “A Study of Entropy Generation in Fundamental Convective Heat Transfer
,” ASME J. Heat Transfer
, 101
, pp. 718
–725
. 16.
Bejan
, A.
, 1982, Entropy Generation Through Heat and Fluid Flow
, John Wiley & Sons
, New York
.17.
Bejan
, A.
, 1996, Entropy Generation Minimization
, CRC
, Boca Raton, FL
.18.
Hesselgreaves
, J.
, 2000, “Rationalisation of Second Law Analysis of Heat Exchangers
,” J. Heat Mass Transfer
, 43
, pp. 4189
–4204
. 19.
Herwig
, H.
, and Kock
, F.
, 2007, “Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,” Heat Mass Transfer
, 43
, pp. 207
–215
. 20.
Anand
, D.
, 1984, “Second Law Analysis of Solar Powered Absorption Cooling Cycles and Systems
,” J. Sol. Energy Eng.
, 106
, pp. 291
–298
. 21.
Nuwayhid
, R.
, Moukalled
, F.
, and Noueihed
, N.
, 2000, “On Entropy Generation in Thermoelectric Devices
,” Energy Convers. Manage.
, 41
, pp. 891
–914
. 22.
Assad
, E.
, 2000, “Thermodynamic Analysis of an Irreversible MHD Power Plant
,” Int. J. Energy Res.
, 24
, pp. 865
–875
. 23.
Shiba
, T.
, and Bejan
, A.
, 2001, “Thermodynamic Optimization of Geometric Structure in the Counterflow Heat Exchanger for an Environmental Control System
,” Energy
, 26
, pp. 493
–511
. 24.
Saidi
, M.
, and Yazdi
, M.
, 1999, “Exergy Model of A Vortex Tube System With Experimental Results
,” Energy
, 24
, pp. 625
–632
. 25.
Ko
, T.
, and Ting
, K.
, 2006, “Entropy Generation and Optimal Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study
,” Int. J. Therm. Sci.
, 45
, pp. 138
–150
. 26.
San
, J.
, and Jan
, C.
, 2000, “Second Law Analysis of a Wet Crossflow Heat Exchanger
,” Energy
, 25
, pp. 939
–955
. 27.
Johannessen
, E.
, Nummedal
, L.
, and Kjelstrup
, S.
, 2002, “Minimizing the Entropy Production in Heat Exchange
,” Int. J. Heat Mass Transfer
, 45
(13
), pp. 2649
–2654
. 28.
Vargas
, J.
, and Bejan
, A.
, 2001, “Thermodynamic Optimization of Finned Crossflow Heat Exchangers for Aircraft Environmental Control Systems
,” Int. J. Heat Fluid Flow
, 22
(6
), pp. 657
–665
. 29.
Zimparov
, V.
, 2000, “Extended Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces: Heat Transfer Through Ducts With Constant Wall Temperature
,” Int. J. Heat Mass Transfer
, 43
(17
), pp. 3137
–3155
. 30.
Mahulikar
, S.
, and Herwig
, H.
, 2004, “Conceptual Investigation of the Entropy Principle for Identification of Directives for Creation, Existence and Total Destruction of Order
,” Phys. Scr.
, 7
, pp. 212
–221
. 31.
Mahulikar
, S.
, and Herwig
, H.
, 2009, “Exact Thermodynamic Principles for Dynamic Order Existence and Evolution in Chaos
,” Chaos, Solitons Fractals
, 41
, pp. 1939
–1948
. 32.
Spurk
, J. H.
, and Aksel
, N.
, 2008, Fluid Mechanics
, 2nd ed., Springer-Verlag
, Berlin
.33.
Kock
, F.
, and Herwig
, H.
, 2004, “Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,” Int. J. Heat Mass Transfer
, 47
, pp. 2205
–2215
. 34.
Moody
, L.
, 1944, “Friction Factors for Pipe Flow
,” Trans. ASME
, 66
, pp. 671
–684
.35.
Herwig
, H.
, Gloss
, D.
, and Wenterodt
, T.
, 2008, “A New Approach to Understanding and Modelling the Influence of Wall Roughness on Friction Factors for Pipe and Channel Flows
,” J. Fluid Mech.
, 613
, pp. 35
–53
. 36.
Herwig
, H.
, Schmandt
, B.
, and Uth
, M.-F.
, 2010, “Loss Coefficients in Laminar Flows: Indispensible for the Design of Microflow Systems
,” Proceedings of ICNMM2010
, Paper No. ICNMM2010-30166.37.
Gloss
, D.
, and Herwig
, H.
, 2010, “Wall Roughness Effects in Laminar Flows: An Often Ignored Though Significant Issue
,” Exp. Fluids
, 49
, pp. 461
–470
. 38.
Nikuradse
, J.
, 1933, “Strömungsgesetze in rauhen Rohren
,” Vol. 361
, Forschungsheft
, VDI-Verlag
, Düsseldorf
.39.
Schiller
, L.
, 1923, “Über den Strömungswiderstand von Rohren verschiedenen Querschnitts- und Rauhigkeitsgrades
,” ZAMM
, 3
, pp. 2
–13
. 40.
Kiš
, P.
, and Herwig
, H.
, “Entropy Production in Turbulent Convection: An Analysis Based on Direct Numerical Simulation of a Plane Channel Flow
,” Proceedings of the Sixth International Symposium on Heat and Mass Transfer
.41.
Kiš
, P.
, and Herwig
, H.
, 2010, “A Second Law Analysis of Mixed Convection in a Plane Channel Based on DNS Results
,” Proceedings of IHTC14
, Paper No. IHTC14-22619.42.
Gee
, D.
, and Webb
, R.
, 1980, “Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,” Int. J. Heat and Mass Transfer
, 23
, pp. 1127
–1136
. 43.
Steinke
, M. E.
, and Kandlikar
, S. G.
, 2006, “Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,” Proceedings of ICNMM2006
, Paper No. 96227.44.
Colebrook
, C.
, 1939, “Turbulent Flow in Pipes With Particular Reference to the Transition Between the Smooth and Rough Pipe Laws
,” J. Inst. Civil Eng. London
, 11
, pp. 133
–142
.45.
Gnielinski
, V.
, 1976, “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,” Int. Chem. Eng.
, 16
, pp. 359
–368
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.