The performance goal of modern gas turbine engines, both land-base and air-breathing engines, can be achieved by increasing the turbine inlet temperature (TIT). The level of TIT in the near future can reach as high as 1700 °C for utility turbines and over 1900 °C for advanced military engines. To ensure the turbine airfoil component integrity operated under such a condition, advanced cooling capacity by both external and internal means was necessary to remove the excessive heat load from the turbine airfoil. This paper discusses state-of-the-art airfoil cooling technologies along with the associated thermal transport issues. Discussion is given based on five key regions on and around an airfoil: leading edge, main body, trailing edge, endwall, and near-tip. Potential implications and challenges of near-term developments in coal-gas based turbines on the cooling technologies are identified. A literature survey focusing primarily on the past 4–5years since the last International Heat Transfer Conference has also been performed.

References

1.
Chyu
,
M. K.
,
Siw
,
S.
,
Mazzotta
,
D.
,
Karaivanov
,
V.
, and
Alvin
,
M. A.
, 2009, “
Aerothermal Challenges in Syngas, Hydrogen-Fired and Oxy-Fuel Turbines: Part I—Gas Side Heat Transfer
,”
ASME Trans. J. Therm. Sci. Eng. Appl.
,
1
, p.
011002
.
2.
Chyu
,
M. K.
,
Siw
,
S.
,
Karaivanov
,
V.
, and
Alvin
,
M. A.
, 2009, “
Aerothermal Challenges in Syngas, Hydrogen-Fired and Oxy-Fuel Turbines: Part II—Effects of Internal Heat Transfer
,”
ASME Trans. J. Therm. Sci. Eng. Appl.
,
1
, p.
011003
.
3.
Alvin
,
M. A.
,
Pettit
,
F.
,
Meier
,
G
,
Yanar
,
N.
,
Chyu
,
M.
,
Mazzotta
,
D.
,
Slaughter
,
W.
,
Karaivanov
,
V.
,
Kang
,
B
,
Feng
,
C.
,
Chen
,
R.
, and
Fu
,
T. C.
, 2007, “
Materials and Component Development for Advanced Turbine Systems
,”
5th International Conference on Advances in Materials Technology for Fossil Power Plants
, Marco Island, Florida, Oct. 2–5.
4.
Boyce
,
M. P.
, 2006,
Gas Turbine Engineering Handbook
, 3rd ed.,
Gulf Professional Publishing
,
Houston, TX
, pp.
47
48
.
5.
Simoneau
,
R. J.
, and
Simon
,
F. F.
, 1993, “
Progress Towards Understanding and Predicting Heat Transfer in the Turbine Gas Path
,”
Int. J. Heat Fluid Flow
,
14
(
2
), pp.
106
128
.
6.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, p.
10001
.
7.
Langston
,
L. S.
, and
Holley
,
B. M.
, 2009, “
Turbine Airfoil Leading Edge Stagnation Aerodynamics and Heat Transfer—A Review
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
8.
Holley
,
B. M.
, and
Langston
,
L. S.
, 2008, “
Analytical Modeling of Turbine Cascade Leading Edge Heat Transfer Using Skin Friction and Pressure Measurements
,”
ASME J. Turbomach.
,
130
, p.
021001
.
9.
Ligrani
,
P. M.
, and
Mitchell
,
S. W.
, 1994, “
Interactions Between Embedded Vortices and Injectant From Film Cooling Holes With Compound Angle Orientations in a Turbulent Boundary Layer
,”
ASME J. Turbomach.
,
116
(
1
), pp.
80
91
.
10.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.
11.
Sen
,
B.
,
Schmidt
,
D.
, and
Bogard
,
D.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.
12.
Han
,
J. C.
, and
Rallabandi
,
A. P.
, 2010, “
Turbine Blade Film Cooling Using PSP Techniques
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
13.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
14.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.
15.
Bunker
,
R. S.
, 2005, “
A Review of Turbine Shaped Film Cooling Technology
,”
J. Heat Transfer
,
127
, pp.
441
453
.
16.
Bunker
,
R. S.
, 2002, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” IGTI Turbine Expo, Amsterdam, Netherlands, Paper No. GT-2002-30178.
17.
Bunker
,
R. S.
, 2009, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
18.
Bunker
,
R. S.
, and
Metzger
,
D. E.
, 1990, “
Local Heat Transfer in Internal Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
19.
Han
,
B.
, and
Goldstein
,
R. J.
, 2001, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
20.
Wiegand
,
B.
, and
Spring
,
S.
, 2009, “
Multiple Jet Impingement—A Review
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
21.
Annerfeldt
,
M.
,
Peerson
,
L.
, and
Torrison
,
T.
, 2001, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,” ASME Paper No. 2001-GT-0149.
22.
Chang
,
S. W.
,
Jan
,
Y. J.
, and
Chang
,
S. F.
, 2006, “
Heat Transfer of Impinging Jet-Array Over Convex-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
49
(
17-18
), pp.
3045
3059
.
23.
Mazzotta
,
D. W.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
, 2007, “
Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines
,” ASME Paper No. GT2007-28296.
24.
Han
,
J. C.
, and
Wright
,
L. M.
, 2006, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
The Gas Turbine Handbook
,
U.S. Department of Energy, Office of Fossil Energy
,
NETL
, pp.
321
354
.
25.
Han
,
J. C.
, and
Dutta
,
S.
, 2001, “
Recent Developments in Turbine Blade Internal Cooling
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
162
178
.
26.
Han
,
J. C.
, and
Huh
,
M.
, 2009, “
Recent Studies in Turbine Blade Internal Cooling
,”
Internaitonal Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
27.
Lafleur
,
R. S.
, 2008, European Patent Specification, EP 1,617,043 B1.
28.
Ganmol
,
P.
,
Chyu
,
M. K.
,
Chi
,
X.
,
Shih
,
T. I. -P. I.-P.
, and
Alvin
,
M. A.
, 2010, “
Effects of 90-Degree Jet Inlet on Heat Transfer From Staggered Pin Fin Arrays
,”
ASME-ATI-UIT 2010 Conference on Thermal and Environmental
, Sorrento, Italy, May 16–19.
29.
Armstrong
,
J.
, and
Winstanley
,
D.
, 1987, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,” ASME Paper No. 87-GT-201.
30.
Park
,
J. S.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
, 2008, “
Heat Transfer on Rotating Channel With Various Height of Pin Fins
,” ASME Paper No. GT2008-50783.
31.
Chyu
,
M. K.
,
Siw
,
S.
, and
Moon
,
H. K.
, 2009, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,” ASME Paper No. GT2009-59814.
32.
Siw
,
S.
,
Chyu
,
M. K.
,
Shih
,
T. I. -P. I.-P.
, and
Alvin
,
M. A.
, 2010, “
Effects of Pin Detached Space on Heat Transfer From Pin Fin Arrays
,” ASME Paper No. GT2010-23227.
33.
Cunha
,
F. J.
, and
Chyu
,
M. K.
, 2006, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.
34.
Hill
,
E. C.
,
Liang
,
G. P.
, and
Auxier
,
T.
, 1986, U.S. Patent No. 4,601,638.
35.
Sylvestro
,
J. A.
,
Linask
,
I.
, and
Beabout
,
B. K.
, 1992, U.S. Patent No. 5,368,441.
36.
Martini
,
P.
, and
Schulz
,
A.
, 2004, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Coolant Wall Jets Ejected from a Slot With Internal Rib Arrays
,”
ASME J. Turbomach.
,
126
(
2
), pp.
229
236
.
37.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
, 2005, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,” ASME Paper No. GT2005-68083.
38.
Chen
,
S. P.
,
Li
,
P. W.
,
Chyu
,
M. K.
Cunha
,
F. J.
, and
Abdel-Messeh
,
W.
, 2006, “
Heat Transfer in an Airfoil Trailing Edge Configuration With Shaped Pedestals Mounted Internal Cooling Channel and Pressure Side Cutback
,” ASME Paper No. GT2006-91019.
39.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
, pp.
866
874
.
40.
Sharma
,
O. P.
and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.
41.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.
42.
Goldstein
,
R. J.
, and
Chen
,
P. H.
, 1985, “
Film Cooling on a Gas Turbine Blade Near the Endwall
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
117
122
.
43.
Goldstein
,
R. J.
, and
Chen
,
P. H.
, 1987, “
Film Cooling on a Turbine Blade With Injection through Two Rows of Holes in the Near-Endwall Region
,”
ASME J. Turbomach.
,
109
, pp.
588
593
.
44.
Sundram
,
N.
, and
Thole
,
K. A.
, 2007, “
Bump and Trench Modifications to Film-Cooling Holes at the Vane Endwall Junction
,” ASME Paper No. GT2007-27132.
45.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2009, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
, p.
011014
.
46.
Yu
,
Y.
, and
Chyu
,
M. K.
, 1998, “
Influence of a Leaking Gap Downstream of the Injection Holes on Film Cooling Performance
,”
ASME J. Turbomach.
,
120
, pp.
541
548
.
47.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
27
36
.
48.
Ranson
,
W. W.
,
Thole
,
L. A.
, and
Cunha
,
F. J.
, 2004, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,” ASME Paper No. IMECE2004-62021.
49.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” ASME Paper No. GT2005-68340.
50.
Deich
,
M. E.
,
Zaryankin
,
A. E.
,
Fillipov
,
G. A.
, and
Zatsepin
,
M. F.
, 1960, “
Method of Increasing the Efficiency of Turbine Stages and Short Blades
,” Teploenergetika, No. 2, February, Translation No. 2816, Associated Electrical Industries (Manchester) Ltd., April.
51.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
, 1981, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1020
1040
.
52.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici.
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007-27579.
53.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
, 2009, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two Dimensional Cascade Passage
,” ASME Paper No. GT2009-60236.
54.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
,
Lehane
,
C.
, 2009, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,” ASME Paper No. GT2009-60185.
55.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
, 2009, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,” ASME Paper No. GT2009-59169.
56.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
, 1987, “
Heat Transfer in Shrouded Rectangular Cavities
,”
AIAA J. Thermophys. Heat Transfer
,
1
, pp.
247
252
.
57.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
, 1989, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
79
.
58.
Kim
,
Y. W.
, and
Metzger
,
D. E.
, 1995, “
Heat Transfer and Effectiveness of Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
, pp.
12
21.
59.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
64
79
.
60.
Bunker
,
R. S.
, 2006, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
287
.
61.
Bunker
,
R. S.
, 2007, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,” ASME Paper No. GT2007-27009.
You do not currently have access to this content.