Abstract

Systematic methods for the solution of inverse problems have developed significantly during the past two decades and have become a powerful tool for analysis and design in engineering. Inverse analysis is nowadays a common practice in which teams involved with experiments and numerical simulation synergistically collaborate throughout the research work, in order to obtain the maximum of information regarding the physical problem under study. In this paper, we briefly review various approaches for the solution of inverse problems, including those based on classical regularization techniques and those based on the Bayesian statistics. Applications of inverse problems are then presented for cases of practical interest, such as the characterization of nonhomogeneous materials and the prediction of the temperature field in oil pipelines.

References

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley Interscience
,
New York
.
2.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
, 1977,
Solution of Ill-Posed Problems
,
Winston & Sons
,
Washington
, DC.
3.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley Interscience
,
New York
.
4.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
5.
Alifanov
,
O. M.
,
Artyukhin
,
E.
, and
Rumyantsev
,
A.
, 1995,
Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems
,
Begell House
,
New York
.
6.
Woodbury
,
K.
, 2002,
Inverse Engineering Handbook
,
CRC Press
,
Boca Raton, FL
.
7.
Sabatier
,
P. C.
, 1978,
Applied Inverse Problems
,
Springer Verlag
,
Hamburg
.
8.
Morozov
,
V. A.
, 1984,
Methods for Solving Incorrectly Posed Problems
,
Springer-Verlag
,
New York
.
9.
Murio
,
D. A.
, 1993,
The Mollification Method and the Numerical Solution of Ill-Posed Problems
,
Wiley Interscience
,
New York
.
10.
Trujillo
,
D. M.
, and
Busby
,
H. R.
, 1997,
Practical Inverse Analysis in Engineering
,
CRC Press
,
Boca Raton
.
11.
Hensel
,
E.
, 1991,
Inverse Theory and Applications for Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Kurpisz
,
K.
, and
Nowak
,
A. J.
, 1995,
Inverse Thermal Problems
,
WIT Press
,
Southampton, United Kingdom
.
13.
Vogel
,
C.
, 2002,
Computational Methods for Inverse Problems
,
SIAM
,
New York
.
14.
Yagola
A. G.
,
Kochikov
,
I. V.
,
Kuramshina
,
G. M.
, and
Pentin
,
Y. A.
, 1999,
Inverse Problems of Vibrational Spectroscopy
,
VSP
,
Netherlands
.
15.
Kaipio
,
J.
and
Somersalo
,
E.
, 2004,
Statistical and Computational Inverse Problems
(
Applied Mathematical Sciences, 160), Springer-Verlag
,
New York
.
16.
Calvetti
,
D.
, and
Somersalo
,
E.
, 2007,
Introduction to Bayesian Scientific Computing
,
Spinger
,
New York
.
17.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
New York
.
18.
Tan
,
S.
,
Fox
,
C.
, and
Nicholls
,
G.
, 2006,
Physics 707 Inverse Problems (Course Notes)
,
University of Auckland
,
Auckland
.
19.
A.
Tarantola
, 1987,
Inverse Problem Theory
,
Elsevier
,
New York
.
20.
Bertero
,
M.
, and
Boccacci
,
P.
, 1998,
Introduction to Inverse Problems in Imaging
,
Institute of Physics
,
New York
.
21.
Orlande
,
H.
,
Fudym
,
F.
,
Maillet
,
D.
, and
Cotta
,
R.
, 2011,
Thermal Measurements and Inverse Techniques
,
CRC Press
,
Boca Raton, FL
.
22.
Hadamard
,
J.
, 1923,
Lectures on Cauchy’s Problem in Linear Differential Equations
,
Yale University Press
,
New Haven, CT
.
23.
Dulikravich
,
G.
, and
Martin
,
T.
, 1996, “
Inverse Shape and Boundary Condition Problems and Optimization in Heat Conduction
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor and Francis
,
Washington
, DC, Vol.
1
, pp.
381
426
, Chap. X.
24.
Dulikravich
,
G. S.
, 1988, “
Inverse Design and Active Control in Strong Unsteady Heat Conductions
,”
Appl. Mech. Rev.
,
41
, pp.
270
277
.
25.
Kubo
,
S.
, 1993, “
Classification of Inverse Problems Arising in Field Problems and Their Treatments
,” Proceedings of the 1st IUTAM Symposium on Inverse Problems in Engineering Mechanics,
M.
Tanaka
and
D. D.
Bui
,
Tokyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
51
60
.
26.
Martin
,
T.
, and
Dulikravich
,
G. S.
, 1996, “
Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation
,”
ASME J. Heat Transfer
,
118
, pp.
546
554
.
27.
Calderón
,
A. P.
, 1980, “
On An Inverse Boundary Value Problem,” Seminar on Numerical Analysis and its Applications to Continuum Physics
,”
Rio de Janeiro
,
W. H.
Meyer
and
M. A.
Raupp
, eds.,
Sociedade Brasileira de Matematica
, pp.
65
73
;
Calderón
,
A. P.
see also,
Comput. Appl. Math.
[online], 2006,
25
(
2–3
), pp.
133
138
.
28.
ASME, 2009, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” ASME, New York, Pub. No. V&V 20-2009.
29.
Beck
,
J. V.
, 1999, “
Sequential Methods in Parameter Estimation,” 3rd International Conference on Inverse Problems in Engineering
,
Tutorial Session
,
Port Ludlow, WA
.
30.
Colaço
,
M. J.
,
Orlande
,
H. R. B.
,
Dulikravich
,
G. S.
, 2006, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
, pp.
1
24
.
31.
Winkler
,
R.
, 2003,
An Introduction to Bayesian Inference and Decision
,
Probabilistic Publishing
,
Sugar Land, TX
.
32.
Lee
,
P. M.
, 2004,
Bayesian Statistics
,
Oxford University Press
,
London
.
33.
Gamerman
,
D.
,. and
Lopes
,
H. F.
, 2006
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
, 2nd ed.,
Chapman & Hall/CRC
,
Boca Raton, FL
.
34.
Blackwell
,
B. F.
, and
Dowding
,
K.
, 2002, “
Sensitivity and Uncertainty Analysis for Thermal Problems
,” Inverse Problems in Engineering: Theory and Practice, Vol.
1
,
Helcio R. B.
Orlande
, ed., Rio de Janeiro, pp.
61
72
, e-papers.
35.
Thomson
,
Nicolau
Hess
, and
Orlande
,
H. R. B.
, 2006,
“Computation of Sensitivity Coefficients and Estimation of Thermophysical Properties with the Line Heat Source Method,”
III Conference On Computational Mechanics
,
C. A.
Mota Soares
,
J. A. C.
Martins
,
H. C.
Rodrigues
,
Jorge A. C.
Ambrosio
,
C. A. B.
Pina
,
C. M.
Mota Soares
,
E. B. R.
Pereira
,
J.
Folgado
, eds.,
Springer-Verlag
,
The Netherlands
.
36.
Levenberg
,
K.
, 1944, “
A Method for the Solution of Certain Non-linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
37.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
”,
J. Soc. Ind. Appl. Math
,
11
, pp.
431
441
.
38.
Yagola
,
A.
, and
Titarenko
,
V.
, 2002, “
Numerical Methods and Regularization Techniques for the Solution of Ill-Posed Problems
,”
Inverse Problems in Engineering: Theory and Practice
, Vol.
1
,
Helcio R. B.
Orlande
, ed.,
Rio de Janeiro
, pp.
49
58
, e-papers.
39.
Denis
,
B.
,
Dulikravich
,
G.
, and
Yoshimura
,
S.
, 2004, “
A Finite Element Formulation for the Determination of Unknown Boundary Conditions for 3D Steady Thermoelastic Problems
,
ASME J. Heat Transfer
,
126
, pp.
110
118
.
40.
Jarny
,
Y.
,
Özisik
,
M. N.
, and
Bardon
J. P.
, 1991, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2911
2919
.
41.
Alifanov
,
O.
, 2002, “
Mathematical and Experimental Simulation in Designing and Testing Heat-Loaded Engineering Objects
,”
Inverse Problems in Engineering: Theory and Practice
, Vol.
1
,
Helcio R. B.
Orlande
, ed.,
Rio de Janeiro
, pp.
13
21
, e-papers.
42.
Fletcher
,
R.
, and
Reeves
C. M.
, 1964, “
Function Minimization by Conjugate Gradients
,”
Computer J.
,
7
, pp.
149
154
.
43.
Polak
,
E.
, 1985,
Computational Methods in Optimization
,
Academic Press
,
New York
.
44.
Hestenes
,
M. R.
, and
Stiefel
,
E.
, 1952, “
Methods of Conjugate Gradients for Solving Linear Systems”
,
J. Res. NBS
,
49
, pp.
409
436
.
45.
Powell
,
M. J. D.
, 1977, “
Restart Procedures for the Conjugate Gradient Method
,”
Math. Program.
,
12
, pp.
241
254
.
46.
Colaço
,
M. J.
, and
Orlande
,
H. R. B.
, 1999, “
Comparison of Different Versions of the Conjugate Gradient Method of Function Estimation
,”
Numer. Heat Transfer
,
36
, pp.
229
249
.
47.
Mejias
,
M. M.
,
Orlande
,
H. R. B.
, and
Ozisik
,
M. N.
, 1999, “
A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids
,” 3rd International Conference on Inverse Problems in Engineering,
Port Ludlow, WA
.
48.
Rodrigues
,
F. A.
,
Orlande
,
H. R. B.
, and
Dulikravich
,
G. S.
, 2004, “
Simultaneous Estimation of Spatially-Dependent Diffusion Coefficient and Source-Term in a Nonlinear 1D Diffusion Problem
,”
Math. Comput. Simul.
,
66
, p.
409
424
.
49.
Saker
,
L. F.
,
Orlande
,
H. R. B.
,
Huang
,
C.
,
Kanevce
,
G.
, and
Kanevce
,
L.
, 2007, “
Simultaneous Estimation of the Spacewise and Timewise Variations of Mass and Heat Transfer Coefficients in Drying
,”
Inverse Probl. Sci. Eng.
,
15
, pp.
137
150
.
50.
Wang
,
J.
, and
Zabaras
,
N.
, 2004, “
A Bayesian Inference Approach to the Stochastic Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3927
3941
.
51.
Wang
,
J.
, and
Zabaras
,
N.
, 2004, “
A Computational Statistics Approach to Stochastic Inverse Problems and Uncertainty Quantification in Heat Transfer
,” Proceedings of the VI World Conference on Computational Mechanics, Sept. 5–10,
Beijing, China
.
52.
Mota
,
C. A. A.
,
Orlande
,
H. R. B.
,
Wellele
,
O.
,
Kolehmainen
,
V.
, and
Kaipio
,
J.
, 2009, “
Inverse Problem of Simultaneous Identification of Thermophysical Properties and Boundary Heat Flux
”,
High Temp. -High Press.
,
38
, pp.
171
185
.
53.
Orlande
,
H. R. B.
,
Kolehmainen
,
V.
, and
Kaipio
,
J. P.
, 2007, “
Reconstruction of Thermal Parameters Using a Tomographic Approach
,”
Int. J. Heat Mass Transfer
,
50
, pp.
5150
5160
.
54.
Emery
,
A. F.
, 2007,
“Estimating Deterministic Parameters by Bayesian Inference with Emphasis on Estimating the Uncertainty of the Parameters,”
Proceedings of the Inverse Problem, Design and Optimization Symposium,
Miami Beach, FL
. Vol.
1
, pp.
266
272
.
55.
Mota
,
C.
,
Orlande
,
H.
,
De Carvalho
,
M.
,
Kolehmainen
,
V.
,
Kaipio
,
J.
, 2010, “
Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux
”,
Heat Transfer Engineering
,
31
, pp.
570
580
.
56.
Naveira-Cotta
,
C.
,
Orlande
,
H.
,
Cotta
,
R.
, 2010, “
Integral Transforms And Bayesian Inference in the Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems
”, Numerical Heat Transfer, Part B, 57, pp. 173–202.
57.
Naveira-Cotta
,
C.
,
Cotta
,
R.
, and
Orlande
,
H.
, 2010, “
Inverse Analysis of Forced Convection in Micro-Channels With Slip Flow via Integral Transforms and Bayesian Inference
,”
Int. J. Therm. Sci.
49
, pp.
879
888
.
58.
Naveira-Cotta
,
C.
,
Orlande
,
H.
,
Cotta
,
R.
, and
Nunes
,
J.
, 2010, “
Integral Transforms, Bayesian Inference and Infrared Thermography in the Simultaneous Identification of Variable Thermal Conductivity and Diffusivity in Heterogeneous Media
,” Proceedings of the International Heat Transfer Conference IHTC14, Aug. 8–13,
Washington, DC
, Paper No. IHTC14-22511.
59.
Fudym
,
O.
,
Orlande
,
H. R. B.
,
Bamford
,
M.
, and
Batsale
,
J. C.
, 2008, “
Bayesian Approach for Thermal Diffusivity Mapping From Infrared Images With Spatially Random Heat Pulse Heating
,”
J. Phys.
,
135
, pp.
12
42
.
60.
Massard
,
H.
,
Fudym
,
O.
,
Orlande
,
H. R. B.
, and
Batsale
,
J. C.
, 2010, “
Nodal Predictive Error Model and Bayesian Approach for Thermal Diffusivity and Heat Source Mapping
,”
Comptes R. Mec.
,
338
, pp.
434
449
.
61.
Orlande
,
H.
,
Colaço
,
M.
, and
Dulikravich
,
G.
, 2008, “
Approximation of the Likelihood Function in the Bayesian Technique for the Solution of Inverse Problems
,”
Inverse Probl. Sci. Eng.
,
16
(
6
), pp.
677
692
.
62.
Parthasarathy
,
S.
, and
Balaji
,
C.
, 2008, “
Estimation of Parameters in Multi-Mode Heat Transfer Problems Using Bayesian Inference—Effect of Noise and A Priori
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2313
2334
.
63.
Kaipio
,
J.
, and
Fox
,
C.
, 2011, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
32
, pp.
718
753
.
64.
Maybeck
,
P.
, 1979,
Stochastic Models, Estimation and Control
,
Academic Press
,
New York
.
65.
Kalman
,
R.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
, pp.
35
45
.
66.
Kaipio
,
J.
,
Duncan
S.
,
Seppanen
,
A.
,
Somersalo
,
E.
, and
Voutilainen
,
A.
, 2005, “
State Estimation for Process Imaging
,”
Handbook of Process Imaging for Automatic Control
,
D.
Scott
and
H.
McCann
, eds.,
CRC Press
,
Boca Raton
, FL.
67.
Matsevityi
,
Y.
, and
Multanovskii
,
A.
, 1978, “
An Iterative Filter for Solution of the Inverse Heat Conduction Problem
,”
J. Eng. Phys.
,
35
, pp.
1373
1378
.
68.
Matsevityi
,
Y.
, and
Multanovskii
,
A.
, 1985, “
Pointwise Identification of Thermophysical Chracteristics
,”
J. Eng. Phys.
,
49
, pp.
1392
1397
.
69.
Arulampalam
,
S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
, 2009, “
A Tutorial on Particle Filters for On-Line Non-linear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
, pp.
174
188
.
70.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
, 2004,
Beyond the Kalman Filter
,
Artech House
,
Boston
.
71.
Doucet
,
A.
,
Godsill
,
S.
, and
Andrieu
,
C.
, 2000, “
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
,”
Stat. Comput.
,
10
, pp.
197
208
.
72.
Liu
,
J.
, and
Chen
,
R.
, 1998, “
Sequential Monte Carlo Methods for Dynamical Systems
,”
J. Am. Stat. Assoc.
,
93
, pp.
1032
1044
.
73.
Andrieu
,
C.
,
Doucet
,
A.
, and
Robert
,
C.
, 2004, “
Computational Advances for and From Bayesian Analysis
,”
Stat. Sci.
,
19
, pp.
118
127
.
74.
Johansen
,
A.
, and
Doucet
,
A.
, 2008, “
A Note on Auxiliary Particle Filters
,”
Stat. Probab. Lett.
,
78
(
12
), pp.
1498
1504
.
75.
Carpenter
,
J.
,
Clifford
,
P.
, and
Fearnhead
,
P.
, 1999, “
An Improved Particle Filter for Non-Linear Problems
,”
IEE Proc. Part F, Radar Sonar Navig.
,
146
, pp.
2
7
.
76.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
, 2007, “
Sequential Monte Carlo for Bayesian Computation
,”
Bayesian Statistics
,
8
, pp.
1
34
.
77.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
, 2006, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc.
,
68
, pp.
411
436
.
78.
Andrieu
,
C.
,
Doucet, Sumeetpal
,
S.
, and
Tadic
,
V.
, 2004, “
Particle Methods for Charge Detection, System Identification and Control
,”
Proc. IEEE
,
92
, pp.
423
438
.
79.
Godsill
,
S.
,
Doucet
,
A.
, and
West
,
M.
, 2004, “
Monte Carlo Smoothing for Nonlinear Time Series
,”
J. Am. Stat. Assoc.
99
, pp.
156
.
80.
Orlande
,
H.
Dulikravich
,
G.
, and
Colaço
,
M.
, 2008, “
Application of Bayesian Filters to Heat Conduction Problem
,”
EngOpt 2008—International Conference on Eng. Optimization
,
Herskovitz
, ed., June 1–5,
Rio de Janeiro
,
Brazil
.
81.
Doucet
,
A.
,
Freitas
,
N.
, and
Gordon
,
N.
, 2001,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
82.
Batsale
,
J. C.
,
Battaglia
,
J. L.
, and
Fudym
,
O.
, 2004, “
Autoregressive Algorithms and Spatially Random Flash Excitation for 3D Non Destructive Evaluation With Infrared Cameras
,”
QIRT J.
,
1
, pp.
5
20
.
83.
Bamford
,
M.
,
Batsale
,
J. C.
, and
Fudym
,
O.
, 2009, “
Nodal and Modal Strategies for Longitudinal Thermal Diffusivity Profile Estimation
,”
Infrared Phys. Technol.
,
52
, pp.
1
13
.
84.
Cotta
,
R. M.
, 1990, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems,” Numer. Heat Transfer
,
Part B
,
127
, pp.
217
226
.
85.
Cotta
,
R. M.
, 1993,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
86.
Cotta
,
R. M.
, 1984, “
Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method
,”
Int J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
381
394
.
87.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
, 1997,
Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation
,
Wiley-Interscience
,
New York
.
88.
Cotta
,
R. M.
, 1998,
The Integral Transform Method in Thermal and Fluids Sciences and Engineering
,
Begell House
,
New York
.
89.
Cotta
,
R.
, and
Mikhailov
,
M.
, 2006, “
Hybrid Methods and Symbolic Computations
,”
Handbook of Numerical Heat Transfer
, 2nd ed.,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
,
John Wiley
,
New York
, Chap. XVI, pp.
493
522
.
90.
Mikhailov
,
M.
, and
Ozisik
,
M.
, 1984,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
John Wiley
,
New York
.
91.
Vianna
,
F.
,
Orlande
,
H.
, and
Dulikravich
,
G.
, 2010, “
Temperature Field Prediction Of A Multilayered Composite Pipeline Based On The Particle Filter Method
,” Proceedings of the International Heat Transfer Conference IHTC14, Aug. 8–13,
Washington, DC
, Paper No. IHTC14-22462.
You do not currently have access to this content.