The multiscale problems in the thermal and fluid science are classified into two categories: multiscale process and multiscale system. The meanings of the two categories are described. Examples are provided for multiscale process and multiscale system. In this paper, focus is put on the simulation of multiscale process. The numerical approaches for multiscale processes have two categories: one is the usage of a general governing equation and solving the entire flow field involving a variation of several orders in characteristic geometric scale. The other is the so-called “solving regionally and coupling at the interfaces.” In this approach, the processes at different length levels are simulated by different numerical methods and then information is exchanged at the interfaces between different regions. The key point is the establishment of the reconstruction operator, which transforms the data of few variables of macroscopic computation to a large amount of variables of microscale or mesoscale simulation. Six numerical examples of multiscale simulation are presented. Finally, some research needs are proposed.

References

1.
Weinan
,
E.
, and
Engquist
,
B.
, 2003, “
Multiscale Modeling and Computation
,”
Not. Am. Math. Soc.
,
50
(
9
), pp.
1062
1070
.
2.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
McGraw-Hill
,
New York
, p.
2
.
3.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
4.
Versteeg
,
H. K.
, and
Malalsekera
,
W.
, 1955,
An Introduction to Computational Fluid Dynamics. The Finite Volume Method
,
Longmann Scientific and Technical
,
Essex
.
5.
Shyy
,
W.
,
Thakur
,
S. S.
,
Ouyang
,
H.
,
Liu
,
J.
, and
Blosch
,
E.
, 1997,
Computational Techniques for Complex Transport Phenomena
,
Cambridge University Press
,
Cambridge
.
6.
Tao
,
W. Q.
, 2001,
Numerical Heat Transfer
, 2nd ed.,
Xi’an Jiaotong University Press
,
Xi’an
.
7.
Blazek
,
J.
, 2001,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier
,
Amsterdam
.
8.
Jaluria
,
Y.
, and
Torrance
,
K. E.
, 2003,
Computational Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
9.
Qian
,
Y. H.
,
Humiere
,
D. D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
485
.
10.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
329
364
.
11.
Wof-Gladrow
,
D. A.
, 2000,
Lattice-Gas Cellular Automatta and Lattice Boltzmann Models, An Introduction
,
Springer
,
Berlin
.
12.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon Press
,
Oxford
.
13.
He
,
Y. L.
,
Wang
,
Y.
, and
Li
,
Q.
, 2009,
Lattice Boltzmann Method: Theory and Applications
,
Science Press
,
Beijing
.
14.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon Press
,
Oxford
.
15.
Fan
,
J.
, and
Shen
,
C.
, 2001, “
Statistical Simulation of Low-Speed Rarefied Gas Flows
,”
J. Comput. Phys.
,
167
, pp.
393
412
.
16.
Shu
,
C.
,
Mao
,
X. H.
, and
Chew
,
Y. T.
, 2005, “
Particle Number per Cell and Scaling Factor Effect on Accuracy of DSMC Simulation of Micro Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
8
), pp.
827
841
.
17.
Sun
,
Z. X.
,
Tang
,
Z.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2011, “
Proper Cell Dimension and Number of Particles per Cell for DSMC
,” Comput. Fluids (to be published).
18.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford
.
19.
Haile
,
J. M.
, 1992,
Molecular Dynamics Simulation-Elementary Methods
,
Wiley-Interscience/John Wiley & Sons Inc.
,
New York
.
20.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge
.
21.
O’Connel
,
S. T.
, and
Thompson
,
P. A.
, 1995, “
Molecular Dynamics-Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,”
Phys. Rev. E
,
52
(
6
), pp.
R5792
R5795
.
22.
Luan
,
H. B.
, 2011, “
Coupling of Mesoscopic Lattice Boltzmann Method and Macro/Microscopic Method for Simulating Multiscale Thermal and Fluid Science Problems
,” Ph.D. dissertation, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an.
23.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
(
4
), pp.
2391
2403
.
24.
Abraham
,
F. F.
, 2000, “
Dynamically Spanning the Length Scales From the Quantum to the Continuum
,”
Int. J. Mod. Phys. C
,
11
(
6
), pp.
1135
1148
.
25.
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2002, “
Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,”
J. Comput. Phys.
,
190
, pp.
249
274
.
26.
Tao
,
W. Q.
, and
He
,
Y. L.
, 2009, “
Recent Advances in Multiscale Simulation of Heat Transfer and Fluid Flow Problems
,”
Prog. Comput. Fluid Dyn.
,
9
(
3/4/5
), pp.
151
157
.
27.
Moin
,
P.
, and
Mahesh
,
K.
, 1998, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
39
78
.
28.
Tsien
,
H.-S.
, 1946, “
Superaerodynamics, the Mechanics of Rarified Gas
,”
J. Aeronaut. Sci.
,
13
, pp.
653
664
.
29.
Devienne
,
F. M.
, 1965, “
Low Density Heat Transfer
,”
Advances in Heat Transfer
, Vol.
2
,
J. P.
Hartnett
and
T. F.
Irvine
, Jr.
, eds.,
Academic Press
,
New York
, pp.
271
356
.
30.
Eikerling
,
M.
, and
Kornyshev
,
A. A.
, 1998, “
Modeling the Performances of Cathode Catalyst Layers of Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
,
453
, pp.
89
106
.
31.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
,
Redondo
,
A.
, and
Srinivasan
,
S.
, 1988, “
Methods to Advance Technology of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
135
(
9
), pp.
2209
2214
.
32.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
, and
Srinivasan
,
S.
, 1988, “
Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells
,”
J. Electroanal. Chem.
,
251
, pp.
275
295
.
33.
Tao
,
W. Q.
,
Min
,
C. H.
,
He
,
Y. L.
,
Liu
,
X. L.
,
Yin
,
B. H.
, and
Jiang
,
W.
, 2006, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation, Part I: Current Status of Modeling Research and Model Development
,”
J. Power Source
,
160
, pp.
359
373
.
34.
Min
,
C. H.
,
He
,
Y. L.
,
Liu
,
X. L.
,
Yin
,
B. H.
,
Jiang
,
W.
, and
Tao
,
W. Q.
, 2006, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation, Part II: Results of Sensitivity Analysis and Validation of the Model
,”
J. Power Source
,
160
, pp.
374
385
.
35.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Kakizaki
,
K.
, 1975, “
High-Flux Heat Transfer Surface ‘Thermoexcel
,”
Hitachi Rev.
,
24
(
8
), pp.
329
334
.
36.
Tang
,
L.
, and
Joshi
,
Y.
, 1999, “
Integrated Thermal Analysis of Natural Convection Air Cooled Electronic Enclosure
,”
ASME J. Electron. Packag.
,
121
, pp.
108
115
.
37.
Nie
,
Q.
, and
Joshi
,
Y.
, 2008, “
Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets
,”
Numer. Heat Transfer, Part A
,
53
(
3
), pp.
225
248
.
38.
Tang
,
L.
, and
Joshi
,
Y. K.
, 2005, “
A Multi-Grid Based Multi-Scale Thermal Analysis Approach for Combined Mixed Convection, Conduction, and Radiation Due to Discrete Heating
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
18
26
.
39.
Weinan
,
E.
, and
Engquist
,
B.
, 2003, “
The Heterogeneous Multiscale Methods
,”
Commun. Math. Sci.
,
1
(
1
), pp.
87
133
.
40.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2007, “
The Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys.
,
2
(
3
), pp.
367
450
.
41.
Li
,
Z. H.
, and
Zhang
,
H. X.
, 2004, “
Study on Gas Kinetic Unified Algorithm for Flows from Rarefied, Transition to Continuum
,”
J. Comput. Physics
,
193
(
2
), pp.
708
738
.
42.
Luan
,
H. B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D. L.
, and
Tao
,
W. Q.
, 2011, “
Evaluation of the Coupling Finite Volume Method and Lattice Boltzmann Method for Fluid Flows Around Complex Geometries
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1975
1985
.
43.
Lu
,
T.
,
Shih
,
T. M.
, and
Liem
,
C. B.
, 1997,
Domain Decomposition Methods—New Numerical Techniques for Solving PDE
,
Science Press
,
Beijing
.
44.
Schwarz
,
H. A.
, 1890, “
Gesammelete Mathematische Abhandlungen
,”
Vierteljahrsschrift der Naturforschenden Geselschaft in Zurich
, Vol.
2
, Springer, Berlin, pp.
272
286
.
45.
Wagner
,
G.
,
Flekkøy
,
E.
,
Feder
,
J.
, and
Jøssang
,
T.
, 2002, “
Coupling Molecular Dynamics and Continuum Dynamics
,”
Comput. Phys. Commun.
,
147
, pp.
670
673
.
46.
Nie
,
X. B.
,
Chen
,
S. Y.
, and
Robbins
,
M. O.
, 2004, “
Hybrid Continuum-Atomistic Simulation of Singular Corner Flow
,”
Phys. Fluids
,
16
, pp.
3579
3591
.
47.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
, 2005, “
Hybrid Atomistic-Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
,
205
, pp.
373
390
.
48.
Liu
,
J.
,
Chen
,
S. Y.
,
Nie
,
X. B.
, and
Robbins
,
M. O.
, 2007, “
A Continuum Atomistic Simulation of Heat Transfer in Micro- and Nano-Flow
,”
J. Comput. Phys.
,
227
, pp.
279
291
.
49.
Wang
,
Y. C.
, and
He
,
G. W.
, 2007, “
A Dynamic Coupling Model for Hybrid Atomistic-Continuum Computations
,”
Chem. Eng. Sci.
,
62
, pp.
3574
3579
.
50.
Yen
,
T. H.
,
Soong
,
C. Y.
, and
Tzeng
,
P. H.
, 2007, “
Hybrid Molecular Dynamics-Continuum Simulation for Nano/Mesoscale Channel
,”
Microfluid. Nanofluid.
,
3
, pp.
665
675
.
51.
Yasuda
,
S.
, and
Yamamoto
,
R.
, 2008, “
A Model for Hybrid Simulation of Molecular Dynamics and Computational Fluid Dynamics
,”
Phys. Fluids
,
20
,
113101
.
52.
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Molecular Dynamics and Continuum Hybrid Simulation for Condensation of Gas Flow in a Micorchannel
,”
Microfluid. Nanofluid.
,
7
(
3
), pp.
407
422
.
53.
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Scale Effect on Flow and Thermal Boundaries in Micro/Nano-Channel Flow Using Molecular-Continuum Hybrid Simulation Method
,”
Int. J. Numer. Methods Eng.
,
81
(
2
), pp.
207
228
.
54.
Hash
,
B.
, and
Hassan
,
A.
, 1997, “
Two-Dimensional Coupling Issues of Hybrid DSMC/Navier-Stokes Solvers
,” AIAA Paper No. 1997-2507.
55.
Wu
,
J.-S.
,
Lian
,
Y.-Y.
,
Cheng
,
G.
,
Koomullil
,
P. R.
, and
Tseng
,
K.-C.
, 2006, “
Development and Verification of a Coupled DSMC-NS Scheme Using Unstructured Mesh
,”
J. Comput. Phys.
,
219
, pp.
579
607
.
56.
Roveda
,
R.
,
Goldstein
,
D. B.
, and
Varghese
,
P. L.
, 1998, “
Hybrid Euler/Particle Approach for Continuum/Rarefied Flows
,”
J. Spacecr. Rockets
,
35
, pp.
258
265
.
57.
Aktas
,
O.
, and
Aluru
,
L. R.
, 2002, “
A Combined. Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters
,”
J. Comput. Phys.
,
178
, pp.
342
372
.
58.
Wu
,
J. S.
,
Lian
,
Y. Y.
,
Cheng
,
G.
, and
Chen
,
Y. S.
, 2007, “
Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulation Using 3-D Unstructured Mesh
,”
Parallel Computational Fluid Dynamics-Parallel Computing and its Applications
,
J. H.
Kwon
,
A.
Ecer
,
J.
Periaux
,
N.
Satofuka
, and
P.
Fox
, eds.,
Elsevier
,
Amsterdam
, pp.
1
10
.
59.
Schwartzentruber
,
T. E.
,
Scalabrin
,
L. C.
, and
Boyd
,
I. D.
, 2006, “
Hybrid Particle-Continuum Simulations of Non-Equilibrium Hypersonic Blunt Body Flow Fields
,” AIAA Paper No. 2006-3602.
60.
Wijesinghe
,
H. S.
,
Hornung
,
R. D.
,
Garcia
,
A. L.
, and
Hadjicons-tantinou
,
N. G.
, 2004, “
Three-Dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
769
777
.
61.
Wong
,
J.
,
Ketsdever
,
A.
, and
Reed
,
H.
, 2003, “
Numerical Modeling of the Free Molecule Micro-Resistojet Prototype and Next Generation Designs Evaluation
,” AIAA Paper No. 2003-3581.
62.
Ahmed
,
Z.
,
Gimelshein
,
S.
, and
Ketsdever
,
A.
, 2005, “
Numerical Analysis of Free Molecule Micro-Resistojet Performance
,” AIAA Paper No. 2005-4262.
63.
Gimelshein
,
S.
,
Markelov
,
G.
,
Lilly
,
T.
,
Selden
,
N.
, and
Ketsdever
,
A.
, 2005, “
Experimental and Numerical Modeling of Rarefied Gas Flows Through Orifices and Short Tubes
,”
24th International Symposium on Rarefied Gas Dynamics
, pp.
437
443
.
64.
Liu
,
M.
,
Zhang
,
X.
,
Zhang
,
G.
, and
Chen
,
Y.
, 2006, “
Study on Micronozzle Flow and Propulsion Performance Using DSMC and Continuum Methods
,”
Acta Mech. Sinica
,
22
, pp.
409
416
.
65.
Xie
,
C.
, 2007, “
Characteristics of Micronozzle Gas Flows
,”
Phys. Fluids
,
19
,
037102
.
66.
Alexeenko
,
A.
,
Levin
,
D.
,
Fedosov
,
D.
, and
Gimelshein
,
G.
, 2005, “
Performance Analysis of Microthrusters Based on Coupled Thermal-Fluid Modeling and Simulation
,”
J. Propul. Power
,
21
(
1
), pp.
95
101
.
67.
Alexeenko
,
A.
,
Fedosov
,
D.
,
Gimelshein
,
S.
,
Levin
,
D.
, and
Collins
,
R.
, 2006, “
Transient Heat Transfer and Gas Flow in a MEMS-Based Thruster
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
181
194
.
68.
Sun
,
Z. X.
,
Li
,
Z. Y.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Coupled Solid (FVM)-Fluid (DSMC) Simulation of Micro-Nozzle With Unstructured-Grid
,”
Microfluid. Nanofluid.
,
7
, pp.
621
631
.
69.
Succi
,
S.
,
Filippova
,
O.
,
Smith
,
G.
, and
Kaxiras
,
E.
, 2001, “
Applying the Lattice Boltzmann Equation to Multi-Scale Fluid Problems
,”
Comput. Sci. Eng.
,
3
(
6
), pp.
26
37
.
70.
Albuquerque
,
P.
,
Alemani
,
D.
,
Chopard
,
B.
, and
Leone
,
P.
, 2004, “
Coupling a Lattice Boltzmann and a Finite Difference Scheme
,”
International Conference on Computational Science—ICCS 2004(Lecture Notes in Computer Science)
,
M.
Bubak
,
G. D.
van Albada
,
P. M.
Sloot
, and
J.
Dongarra
, eds.,
Springer
,
Berlin
, Vol.,
3039
, pp.
540
547
.
71.
Van Leemput
,
P.
,
Samaey
,
G.
,
Lust
,
K.
,
Roose
,
D.
, and
Kevrekidis
,
I. G.
, 2006, “
Numerical and Analytical Spatial Coupling of a Lattice Boltzmann Model and a Partial Differential Equation
,”
Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena
,
A. N.
Gorban
,
N.
Kazantzis
,
I. G.
Kevrekidis
,
H. C.
Ottinger
, and
C.
Theodoropoulos
, eds.,
Springer
,
Berlin
, pp.
423
441
.
72.
Xu
,
H.
, 2009, “
Lattice Boltzmann Model for Turbulent Fluid Flow Simulations and its Application in Multiscale Analysis
,” Ph.D. dissertation, Xi’an Jiaotong University, Xi’an.
73.
Xu
,
H.
,
Luan
,
H. B.
, and
Tao
,
W. Q.
, 2011, “
A Correction Lifting Relation of Macroscopic Variables and Microscopic Variables in Lattice Boltzmann Method
,” (submitted).
74.
Luan
,
H. B
,
Xu
,
H.
,
Chen
,
L.
, and
Tao
,
W. Q.
, 2010,
Coupling Between FVM and LBM for Heat Transfer and Fluid Flow
,
Chin. Sci. Bull.
,
55
(
32
), pp.
3128
3140
.
75.
Horbach
,
J.
, and
Succi
,
S.
, 2006, “
Lattice Boltzmann Versus Molecular Dynamics Simulation of Nanoscale Hydrodynamic Flows
,”
Phys. Rev. Lett.
,
96
,
224503
.
76.
Dupuis
,
A.
,
Kotsalis
,
E. M.
, and
Koumoutsakos
,
P.
, 2007,
Coupling Lattice Boltzmann and Molecular Dynamics Models for Dense Fluids
,
Phys. Rev. E
,
75
,
046704
.
77.
Dzmitry
,
H.
,
Drona
,
K.
, and
Ulrich
,
T.
, 2004, “
Coupled Lattice-Boltzmann and Finite-Difference Simulation of Electroosmosis in Microfluidic Channels
,”
Int. J. Numer. Methods Fluids
,
46
, pp.
507
532
.
78.
Sun
,
J.
,
He
,
Y. L.
,
Tao
,
W. Q.
,
Yin
,
X.
, and
Wang
,
H. S.
, 2009, “
Roughness Effect on Flow and Thermal Boundaries in Microchannel/nanochannel Flow Using Molecular Dynamics-Continuum Hybrid Simulation
,” Int. J. for Numer. Methods in Engineering.
79.
Stoddard
,
S. D.
, and
Ford
,
J.
, 1973, “
Numerical Experiment on the Stochastic Behavior of a Lennard-Jones Gas System
,”
Phys. Rev. A
,
8
(
3
), pp.
1504
1512
.
80.
Dupuis
,
A.
, and
Koumoutsakos
,
P.
, 2007, “
Effects of Atomistic Domain Size on Hybrid Lattice Boltzmann-Molecular Dynamics Simulations for Dense Fluids
,”
Int. J. Mod. Phys. C
,
18
(
4
), pp.
844
651
.
81.
Zhou
,
W. J.
,
Luan
,
H. B.
,
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, “
A Molecular Dynamics and Lattice Boltzmann Hybrid Method for Dense Fluid Flow
,” Int. J. Heat Mass Transfer (submitted).
82.
Hadjiconstantinou
,
N. G.
, and
Patera
,
A. T.
, 1997, “
Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems
,”
Int. J. Mod. Phys. C
,
8
(
4
), pp.
967
976
.
83.
Luan
,
H. B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D. L.
, and
Tao
,
W. Q.
, 2010, “
Numerical Illustrations of the Coupling Between Lattice Boltzmann Method and Finite-Type Macro-Numerical Methods
,”
Numer. Heat Transfer, B
,
57
(
2
), pp.
147
170
.
84.
Dennis
,
S.
, and
Chang
,
G.
, 1970, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Number up to 100
,”
J. Fluid Mech.
,
42
, pp.
471
489
.
85.
He
,
X.
, and
Doolen
,
G.
, 1997, “
Lattice Boltzmann Method on Curvilinear System: Flow Around a Circular Cylinder
,”
J. Comput. Phys.
,
134
, pp.
306
315
.
86.
Guo
,
Z.
, and
Zhao
,
T.
, 2003, “
Explicit Finite-Difference Lattice Boltzmann Method for Curvilinear Coordinates
,”
Phys. Rev. E
,
67
,
066709
.
87.
Imamura
,
T.
,
Suzuki
,
K.
,
Nakamura
,
T.
, and
Yoshida
,
M.
, 2005, “
Acceleration of Steady State Lattice Boltzmann Simulation on Non-Uniform Mesh Using Local Time Step Method
,”
J. Comput. Phys.
,
202
, pp.
645
663
.
88.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
123
60
.
89.
Najm Habib
,
N.
, 2009, “
Uncertainty Quantification, and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
35
52
.
90.
DeVolder
,
B.
,
Glimm
,
J.
,
Grove
,
J. W.
,
Kang
,
Y.
,
Lee
,
Y.
,
Pao
,
K.
,
Sharp
,
D. H.
, and
Ye
,
K.
, 2002, “
Uncertainty Quantification for Multiscale Simulations
,”
ASME J. Fluids Eng.
,
124
, pp.
29
41
.
91.
Christie
,
M.
,
Demyanov
,
V.
, and
Erbas
,
D.
, 2006, “
Uncertainty Quantification for Porous Media Flows
,”
J. Comput. Phys.
,
217
, pp.
143
158
.
92.
Kulakhmetov
,
M.
,
Venkattraman
,
A.
, and
Alexeenko
,
A.
, 2010, “
Effects of Uncertainty in Gas-Surface Interaction on DSMC Simulations of Hypersonic Flows
,”
27th International Symposium on Garified Gas Dynamics
, July 10-15,
CA
.
93.
Hadjiconstantinou Nicolas
,
G.
,
Garcia Alejandro
,
L.
,
Bazant Martin
,
Z.
, and
He
,
G.
, 2003, “
Statistical Error in Particle Simulations of Hydrodynamic Phenomena
,”
J. Comput. Phys.
,
187
, pp.
274
297
.
You do not currently have access to this content.