Metal hydrides are formed when certain metals or alloys are exposed to hydrogen at favorable temperatures and pressures. In order to sustain the sorption of hydrogen during this exothermic process, the generated heat has to be removed effectively. Release of hydrogen is an endothermic process needing supply of heat to the metal hydride matrix. Depending on the application, the heat transfer medium can be either a liquid or a gas. Reduction of the total weight of hydrogen storage devices is essential toward utilization of hydrogen for mobile and portable applications. While a variety of new storage materials with desirable sorption characteristics are being suggested, optimal thermal design of the storage device remains a major challenge. Lack of thermodynamic, transport, and thermophysical property data of the material particles and of the bed is another drawback which needs to be addressed.

References

1.
Shastri
,
M. V. C.
,
Viswanathan
B.
, and
Srinivasa Murthy
S.
, 1998,
Metal Hydrides: Recent Developments
,
Springer Verlag
,
Berlin
.
2.
Srinivasa Murthy
,
S.
, and
Ram Gopal
,
M.
, 1997, “
Heat and Mass Transfer in Metal Hydride Reactors: Influence on Design and Performance of Heating and Cooling Systems
, “Proceedings of Fourteenth National Heat and Mass Transfer Conference/Third ISHMT—ASME Heat and Mass Transfer Conference,
Kanpur
, Dec. 29–31, pp.
73
84
.
3.
Sankaran
,
M.
,
Viswanathan
,
B.
, and
Srinivasa Murthy
,
S.
, 2008, “
Boron Substituted Carbon Nanotubes—How Appropriate are They for Hydrogen Storage?
,”
Int. J Hydrogen Energy
,
33
, pp.
393
403
.
4.
Mohan
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
, 2009, “
A Cell Based Approach to Determine the Minimum Weight of Metal Hydride Hydrogen Storage Devices
,” ASME 3rd International Conference on Energy Sustainability (ES 2009),
San Francisco
, July 19–23.
5.
Mohan
,
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
, 2008, “
Performance of Air Cooled Hydrogen Storage Device with External Fins
,”
Int. J. Low Carbon Technol.
,
3
, pp.
265
281
.
6.
Mohan
,
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
, 2010, “
The Performance Simulation of Air Cooled Hydrogen Storage Device With Plate Fins
,”
Int. J. Low Carbon Technol.
,
5
, pp.
25
34
.
7.
Mohan
,
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
, 2007, “
Performance Simulation of Metal Hydride Hydrogen Storage Device With Embedded Filters and Heat Exchanger Tubes
,”
Int. J. Hydrogen Energy
,
32
, pp.
4978
4987
.
8.
Ram Gopal
,
M.
, and
Srinivasa Murthy
,
S.
, 1995, “
Studies on Heat and Mass Transfer in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
20
, pp.
911
917
.
9.
Ram Gopal
,
M.
, and
Srinivasa Murthy
,
S.
, 1993, “
Parametric Studies on Heat and Mass Transfer in Metal Hydride Beds
,”
Chem. Eng. Process.
,
32
, pp.
217
223
.
10.
Ram Gopal
,
M.
, and
Srinivasa Murthy
,
S.
, 1992, “
Prediction of Heat and Mass Transfer in Annular Cylinderical Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
17
, pp.
795
805
.
11.
Ram Gopal
,
M.
, and
Srinivasa Murthy
,
S.
, 1995, “
Prediction of Metal Hydride Refrigerator Performance Based on Reactor Heat and Mass Transfer
,”
Int. J. Hydrogen Energy
,
20
, pp.
607
614
.
12.
Ram Gopal
,
M.
, and
Srinivasa Murthy
,
S.
, 1995, “
Prediction of Metal Hydride Heat Transformer Performance Based on Heat Transfer and Reaction Kinetics
,”
Ind. Eng. Chem. Res.
,
34
, pp.
2305
2313
.
13.
Phate
,
A. K.
,
Maiya
,
M. P.
, and
Srinivasa Murthy
,
S.
, 2007, “
Simulation of Transient Heat and Mass Transfer During Hydrogen Sorption in Cylindrical Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
32
, pp.
1969
1981
.
14.
Nishizaki
,
T.
,
Miyamoto
,
K.
, and
Yoshida
,
K.
, 1983, “
Coefficients of Performance of Hydride Heat Pumps
,”
J. Less-Common Met.
,
89
, pp.
559
566
.
15.
Bjurstrom
,
H.
,
Suda
,
S.
, and
Lewis
,
D.
, 1987, “
A Numerical Expression for the P-C-T Properties of Metal Hydrides
,”
J. Less-Common Met.
,
130
, pp.
365
370
.
16.
Lucas
,
G. G.
, and
Richards
,
W. L.
, 1984, “
Mathematical Modeling of Hydrogen Storage Systems
,”
Int. J. Hydrogen Energy
,
9
, pp.
225
231
.
17.
Mayer
,
U.
,
Groll
,
M.
, and
Supper
,
W.
, 1987, “
Heat and Mass Transfer in Metal Hydride Reaction Beds: Experimental and Theoretical Results
,”
J. Less-Common Met.
,
131
, pp.
235
244
.
18.
Nakagawa
,
T.
,
Inomata
,
A.
,
Aoki
,
H.
,
Miura
,
T.
, 2000, “
Numerical Analysis of Heat and Mass Transfer Characteristics in the Metal Hydride Bed
,”
Int. J. Hydrogen Energy
,
25
, pp.
339
350
.
19.
Dogan
,
A.
,
Kaplan
,
Y.
, and
Veziroglu
,
T. N.
, 2004, “
Numerical Investigation of Heat and Mass Transfer in a Metal Hydride Bed
,”
Appl. Math. Comput.
,
150
, pp.
169
180
.
20.
Gadre
,
S. A.
,
Ebner
,
A. D.
,
Al-Muhtaseb
,
S. A.
, and
Ritter
,
J. A.
, 2003, “
Practical Modeling of Metal Hydride Hydrogen Storage Systems
,”
Ind. Eng. Chem. Res.
,
42
, pp.
1713
1722
.
21.
Marty
,
P.
,
Fourmigue
,
J. F.
,
De Rango
,
P.
,
Fruchart
,
D.
, and
Charbonnier
,
J.
, 2006, “
Numerical Simulation of Heat and Mass Transfer During the Absorption of Hydrogen in Magnesium Hydride
,”
Energy Convers. Manage.
,
47
, pp.
3632
3643
.
22.
Askri
,
F.
,
Jemni
,
A.
,
Nasrallah
,
S. B.
, 2004, “
Prediction of Transient Heat and Mass Transfer in a Closed Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
29
, pp.
195
208
.
23.
MacDonald
,
B.
, and
Rowe
,
A.
, 2006, “
Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks
,”
Int. J. Hydrogen Energy
,
31
, pp.
1721
1731
.
24.
Choi
,
H.
, and
Mills
,
A. F.
, 1990, “
Heat and Mass Transfer in Metal Hydride Beds for Heat Pump Applications
,”
Int. J. Heat Mass Transfer
,
33
, pp.
1281
1288
.
25.
Gambini
,
M.
, 1994, “
Metal Hydride Energy Systems Performance Evaluation. Part A: Dynamic Analysis Model of Heat and Mass Transfer
,”
Int. J. Hydrogen Energy
,
19
, pp.
67
80
.
26.
Artemov
,
V. I.
,
Yan’kov
,
G. G.
, and
Lazarev
,
D. O.
, 2005, “
Hydrogen Absorption From Gas Mixture in a Metal Hydride Reactor: Mathematical Model and Numerical Results
,” IPHE International Hydrogen Storage Technology Conference,
Italy
.
27.
Dehouche
,
A.
,
de Jong
,
W.
,
Willers
,
E.
,
Isselhorst
,
A.
, and
Groll
,
M.
, 1998, “
Modeling and Simulation of Heating/Air-Conditioning Systems Using the Multi-Hydride-Thermal-Wave Concept
,”
Appl. Therm. Eng.
,
18
, pp.
457
480
.
28.
Anil Kumar
,
E.
, (2010), “
Measurement and Analysis of Thermodynamic and Thermophysical Properties of Mischmetal Based Hydriding Alloys
,” Ph.D. thesis, Mechanical Engineering. Department, Indian Institute of Technology Chennai, India.
29.
Suda
,
S.
,
Kobayashi
,
N.
,
Yoshida
,
K.
,
Ishido
,
Y.
, and
Ono
,
S.
, 1980, “
Experimental Measurements of Thermal Conductivity
,”
J. Less-Common Met.
,
74
, pp.
127
136
.
30.
Suda
,
S.
,
Kobayashi
,
N.
, and
Yoshida
,
K.
, 1981, “
Thermal Conductivity in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
6
, pp.
521
528
.
31.
Suissa
,
E.
,
Jacob
,
I.
, and
Hadari
,
Z.
, 1984, “
Experimental Measurements and General Conclusions on the Effective Thermal Conductivity of Powdered Metal Hydrides
,”
J. Less-Common Met.
,
104
, pp.
287
295
.
32.
Sun
,
D. W.
, and
Deng
,
S. J.
, 1990, “
Theoretical Descriptions and Experimental Measurements on the Effective Thermal Conductivity in Metal Hydride Powder Beds
,”
J. Less-Common Met.
,
160
, pp.
387
395
.
33.
Ishido
,
Y.
,
Kawamura
,
M.
, and
Ono
,
S.
, 1982, “
Thermal Conductivity of Magnesium-Nickel Hydride Powder Beds in a Hydrogen Atmosphere
,”
Int. J. Hydrogen Energy
,
7
, pp.
173
182
.
34.
Hahne
,
E.
, and
Kallweit
,
J.
, 1998, “
Thermal Conductivity of Metal Hydride Materials for Storage of Hydrogen Experimental Investigations
,”
Int. J. Hydrogen Energy
,
23
, pp.
107
114
.
35.
Kapischke
,
J.
, and
Hapke
,
J.
, 1994, “
Measurement of the Effective Thermal Conductivity of a Metal Hydride Bed With Chemical Reaction
,”
Exp. Therm. Fluid Sci.
,
9
, pp.
337
344
.
36.
Kapischke
,
J.
, and
Hapke
,
J.
, 1998, “
Measurement of the Effective Thermal Conductivity of a Mg-MgH2 Packed Bed With Oscillating Heating
,”
Exp. Therm. Fluid Sci.
,
17
, pp.
347
355
.
37.
Kempf
,
P.
, and
Martin
,
W. R. B.
, 1986, “
Measurement of Thermal Properties of TiFe0.85Mn0.15 and Its Hydrides
,”
Int. J. Hydrogen Energy
,
11
, pp.
107
116
.
38.
Pons
,
M.
, and
Dantzer
,
P.
, 1994, “
Determination of Thermal Conductivity and Wall Heat Transfer Coefficient of Hydrogen Storage Materials
,”
Int. J. Hydrogen Energy
,
4
, pp.
19:611
19:616
.
39.
Godell
,
P. D.
, 1980, “
Thermal Conductivity of Hydriding Alloy Powders and Comparison of Reactor Systems
,”
J. Less-Common Met.
,
74
, pp.
175
184
.
40.
Nagel
,
M.
,
Komazaki
,
Y.
, and
Suda
,
S.
, 1986, “
Effective Thermal Conductivity of a Metal Hydride Bed Augmented With a Copper Wire Matrix
,”
J. Less-Common Met.
,
120
, pp.
35
43
.
41.
Ron
,
M.
,
Bershadsky
,
E.
, and
Josephy
,
Y.
, 1992, “
Thermal Conductivity of PMH Compacts, Measurements and Evaluation
,”
Int. J. Hydrogen Energy
,
17
, pp.
623
630
.
42.
Sanchez
,
A. R.
,
Klein
,
H. P.
, and
Groll
,
M.
, 2003, “
Expanded Graphite as Heat Transfer Matrix in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
28
, pp.
515
527
.
43.
Ishikawa
,
H.
,
Oguro
,
K.
,
Kato
,
A.
,
Suzuki
,
H.
, and
Ishii
,
E.
, 1986, “
Preparation and Properties of Hydrogen Storage Alloys Microencapsulated by Copper
,”
J. Less-Common Met.
,
120
, pp.
123
133
.
44.
Kim
,
K. J.
,
Lloyd
,
G.
,
Razani
,
A.
, and
Feldman
,
K. T.
, 1998, “
Development of LaNi5/Cu/Sn Metal Hydride Powder Composites
,”
Powder Technol.
,
99
, pp.
40
45
.
45.
Kim
,
K. J.
,
Montoya
,
B.
,
Razani
,
A.
, and
Lee
,
K. H.
, 2001, “
Metal Hydride Compacts of Improved Thermal Conductivity
,”
Int. J. Hydrogen Energy
,
26
, pp.
609
613
.
46.
Suda
,
S.
,
Kobayashi
,
N.
,
Morishita
,
E.
, and
Takemoto
,
N.
, 1983, “
Heat Transmission Analysis of Metal Hydride Beds
,”
J. Less-Common Met.
,
89
, pp.
325
332
.
47.
Sun
,
D.
, and
Deng
,
S.
, 1988, “
Study of the Heat and Mass Transfer Characteristics of Metal Hydride Beds
,”
J. Less-Common Met.
,
141
, pp.
37
43
.
48.
Laurencelle
,
F.
, and
Goyette
,
J.
, 2007, “
Simulation of Heat Transfer in a Metal Hydride Reactor With Aluminum Foam
,”
Int. J. Hydrogen Energy
,
32
, pp.
2957
2964
.
49.
Golben
,
P. M.
, and
Lee Huston
,
E.
, 1983, “
A Technique for Analyzing Reversible Metal Hydride System Performance
,”
J. Less-Common Met.
,
89
, pp.
333
340
.
50.
Mintz
,
M. H.
, 1991, “
Mixed Mechanisms Controlling Hydrogen-Metal Reactions Under Steady-State Conditions: The Diffusion-Interface Mechanism
,”
J. Alloys Compd.
,
176
, pp.
77
87
.
51.
Lu
,
H.-B.
,
Mazet
,
N.
, and
Spinner
,
B.
, 1996, “
Modeling of Gas-Solid Reaction-Coupling of Heat and Mass Transfer With Chemical Reaction
,”
Chem. Eng. Sci.
,
51
, pp.
3829
3845
.
52.
Lynch
,
F.
, 1980, “
Operating Characteristics of High Performance Commercial Metal Hydride Heat Exchangers
,”
J. Less-Common Met.
,
74
, pp.
411
418
.
53.
Suda
,
S.
,
Kobayashi
,
N.
,
Morishita
,
E.
, and
Takemoto
,
N.
, 1983, “
Heat Transmission Analysis of Metal Hydride Beds
,”
J. Less-Common Met.
,
89
, pp.
325
332
.
54.
Golben
,
P. M.
, and
Lee Huston
,
E.
, 1983, “
A Technique for Analyzing Reversible Metal Hydride System Performance
,”
J. Less-Common Met.
,
89
, pp.
333
340
.
55.
Yang
,
F.
,
Meng
,
X.
,
Deng
,
J.
,
Wang
,
Y.
, and
Zhang
,
Z.
, 2008, “
Identifying Heat and Mass Transfer Characteristics of Metal Hydride Reactor During Adsorption-Parameter Analysis and Numerical Study
,”
Int. J. Hydrogen Energy
,
33
, pp.
1014
1022
.
56.
Jemni
,
A.
, and
Nasrallah
,
S. B.
, 1995, “
Study of Two Dimensional Heat and Mass Transfer During Absorption in a Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
20
, pp.
43
52
.
57.
Groll
,
M.
,
Supper
,
W.
,
Mayer
,
U.
, and
Brost
,
O.
, 1987, “
Heat and Mass Transfer Limitations in Metal Hydride Reaction Beds
,”
Int. J. Hydrogen Energy
,
12
, pp.
89
97
.
58.
Kikkinides
,
E. S.
,
Georgiadis
,
M. C.
, and
Stubos
,
A. K.
, 2006, “
On the Optimization of Hydrogen Storage in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
31
, pp.
737
751
.
59.
Freni
,
A.
,
Cipiti
,
F.
, and
Cacciola
,
G.
, 2009, “
Finite Element Based Simulation of a Metal Hydride Based Hydrogen Storage Tank
,”
Int. J. Hydrogen Energy
,
34
, pp.
8574
8582
.
60.
Krokos
,
C. A.
,
Nikolic
,
D.
,
Kikkinides
,
E. S.
,
Georgiadis
,
M. C.
, and
Stubos
,
A. K.
, 2009, “
Modeling and Optimization of Multi-tubular Metal Hydride Beds for Efficient Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
34
, pp.
9128
9140
.
61.
Hydride Information Centre, Sandia National Laboratories, http://www.hydpark.ca.sandia.govhttp://www.hydpark.ca.sandia.gov.
62.
Rzepka
,
M.
,
Lamp
,
P.
, and
de la Casa-Lillo
,
M. A.
, 1998, “
Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes
,”
J. Phys. Chem. B
,
102
, pp.
10894
10898
.
63.
Benard
,
P.
, and
Chahine
,
R.
, 2001, “
Modelling of Adsorption Storage of Hydrogen on Activated Carbons
,”
Int. J. Hydrogen Energy
,
26
, pp.
849
855
.
64.
Xu
,
W. C.
,
Takahashi
,
K.
,
Matsuo
,
Y.
,
Hattori
,
Y.
,
Kumagai
,
M.
,
Ishiyama
,
S.
,
Kaneko
,
K.
, and
Iijima
,
S.
, 2007, “
Investigation of Hydrogen Storage Capacity of Various Carbon Materials
,”
Int. J. Hydrogen Energy
,
32
, pp.
2504
2512
.
65.
Zhou
,
L.
,
Zhou
,
Y.
, and
Sun
,
Y.
, 2006, “
Studies on the Mechanism and Capacity of Hydrogen Uptake by Physisorption Based Materials
,”
Int. J. Hydrogen Energy
,
31
, pp.
259
264
.
66.
Georgiev
,
P. A.
,
Ross
,
D. K.
,
Albers
,
P.
, and
Cuesta
,
A. J. R.
, 2006, “
The Rotational and Translational Dynamics of Molecular Hydrogen Physisorbed in Activated Carbon: A Direct Probe of Microporosity and Hydrogen Storage Performance
,”
Carbon
,
44
, pp.
2724
2738
.
67.
Thomas
,
K. M.
, 2007, “
Hydrogen Adsorption and Storage on Porous Materials
,”
Catal. Today
,
120
, pp.
389
398
.
68.
Paggiaro
,
R.
,
Benard
,
P.
, and
Polifke
W.
, 2010, “
Cryo-Adsorptive Hydrogen Storage on Activated Arbon. I: Thermodynamic Analysis of Adsorption Vessels and Comparison With Liquid and Compressed Gas Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
35
, pp.
638
647
.
69.
Guan
,
C.
,
Wanga
,
K.
,
Yang
,
C.
, and
Zhao
,
X. S.
, 2009, “
Characterization of a Zeolite-Templated Carbon for H2 Storage Application
,”
Microporous Mesoporous Mater.
,
118
, pp.
503
507
.
70.
Zhou
,
L.
, 2005, “
Progress and Problems in Hydrogen Storage Methods
,”
Renewable Sustainable Energy Rev.
,
9
, pp.
395
408
.
71.
Dillon
,
A. C.
,
Jones
,
K. M.
,
Bekkedahl
,
T. A.
,
Kiang
,
C. H.
,
Bethune
,
D. S.
, and
Heben
,
M. J.
, 1997, “
Storage of Hydrogen in Single-Walled Carbon Nanotubes
,”
Nature (London)
,
386
, pp.
377
379
.
72.
Ye
,
Y.
,
Ahn
,
C. C.
,
Witham
,
C.
,
Fultz
,
B.
,
Liu
,
J.
,
Rinzler
,
A. G.
,
Colbert
,
D.
,
Smith
,
K. A.
, and
Smalley
,
R. E.
, 1999, “
Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
74
, pp.
2307
2309
.
73.
Liu
,
C.
,
Fan
,
Y. Y.
,
Liu
,
M.
,
Cong
,
H. T.
,
Cheng
,
H. M.
, and
Dresselhaus
,
M. S.
, 1999, “
Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature
,”
Science
,
286
, pp.
1127
1129
.
74.
Wang
,
Q. Y.
,
Johnson
,
J. K.
, 1999, “
Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption
,”
J. Phys. Chem. B
,
103
, pp.
4809
4813
.
75.
Wu
,
X. B.
,
Chen
,
P.
,
Lin
,
J.
,
Tan
,
K. L.
, 1999, “
Hydrogen Uptake by Carbon Nanotubes
,”
Int. J. Hydrogen Energy
,
25
, pp.
261
265
.
76.
Hirscher
,
M.
,
Becher
,
M.
,
Haluska
,
M.
,
Quintel
,
A.
,
Skakalova
,
V.
, and
Choi
Y. M.
, 2002, “
Hydrogen Storage in Carbon Nanostructures
,”
J. Alloys Compd.
,
330
, pp.
654
658
.
77.
Yin
,
Y. F.
,
Mays
,
T.
, and
McEnaney
,
B.
, 2000, “
Molecular Simulations of Hydrogen Storage in Carbon Nanotubes Arrays
,”
Langmuir
,
16
, pp.
10521
10527
.
78.
Cao
,
A. Y.
,
Zhu
,
M. W.
,
Zhang
,
X. F.
,
Li
,
X. S.
,
Ruan
,
D. B.
,
Xu
,
C. L.
,
Wei
,
B. Q.
,
Liang
,
J.
,
Wu
,
D. H.
, 2001, “
Hydrogen Storage of Dense-Aligned Catbon Nanotubes
,”
Chem. Phys. Lett.
,
342
, pp.
510
514
.
79.
Chen
,
P.
,
Wu
,
X.
,
Lin
,
J.
, and
Tan
,
K. L.
, 1999, “
High Hydrogen Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures
,”
Science
,
285
, pp.
91
93
.
80.
Yang
,
R.,T.
, 2000, “
Hydrogen Storage by Alkali-Doped Carbon Nanotubes-Revisited
,”
Carbon
,
38
, pp.
623
626
.
81.
Zhu
,
H.,W.
,
Li
,
X. S.
,
Ci
,
L. J.
,
Xu
,
C. L.
,
Wu
,
D. H.
, and
Mao
,
Z. Q.
, 2003, “
Hydrogen Storage in Heat-Treated Carbon Nanofibers Prepared by the Vertical Floating Catalyst Method
,”
Mater. Chem. Phys.
,
78
, pp.
670
675
.
82.
Pinkerton
,
F. E.
,
Wicke
,
B. G.
,
Olk
,
C. H.
,
Tibbetts
,
G. G.
,
Meisner
,
G. P.
,
Meyer
,
M. S.
, and
Herbst
,
J. F.
, 2000, “
Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials
,”
J. Phys. Chem. B
,
104
, pp.
9460
9467
.
83.
Chambers
,
A.
,
Parks
,
C.
,
Baker
,
R. T. K.
, and
Rodriguez
,
N. M.
, 1998, “
Hydrogen Storage in Graphite Nanofiber
,”
J. Phys. Chem. B
,
102
, pp.
4253
4256
.
84.
Fan
,
Y. Y.
,
Liao
,
B.
,
Wei
,
Y. L.
,
Lu
,
M. Q.
, and
Cheng
H. M.
, 1999, “
Hydrogen Uptake in Vapor-Grown Carbon Nanofibers
,”
Carbon
,
37
, pp.
1649
1652
.
85.
Cheng
,
H. M.
,
Liu
,
C.
,
Fan
,
Y. Y.
,
Li
,
F.
,
Su
,
G.
,
Cong
,
H. T.
,
He
,
L. L.
, and
Liu
,
M.
, 2000, “
Synthesis and Hydrogen Storage of Carbon Nanofibers and Single-Walled Carbon Nanotubes
,”
Zeitschrift fur Metallkunde
,
91
, pp.
306
310
.
86.
Orimo
,
S.
,
Meyer
,
G.
,
Fukunaga
,
T.
,
Züttel
,
A.
,
Schlapbach
,
L.
, and
Fujii
,
H.
, 1999, “
Hydrogen in Mechanically Prepared Nanostructured Graphite
,”
Appl. Phys. Lett.
,
75
, pp.
3093
3095
.
87.
Hirscher
,
M.
,
Becher
,
M.
,
Haluska
,
M.
,
Dettlaff-Weglikowska
,
U.
,
Quintel
,
A.
,
Duesberg
,
G. S.
,
Choli
,
Y. M.
,
Downes
,
P.
,
Hulman
,
M.
,
Roth
,
S.
,
Stepanek
,
I.
, and
Bernier
,
P.
, 2001, “
Hydrogen Storage in Sonicated Carbon Materials
,”
Appl. Phys. A.: Mater. Sci. Process.
,
72
, pp.
129
132
.
88.
Anson
,
A.
,
Callejas
,
M. A.
,
Benito
,
A. M.
,
Maser
,
W. K.
, 2004, “
Hydrogen Adsorption Studies on Single Wall Carbon Nanotubes
,”
Carbon
,
42
, pp.
1243
1248
.
89.
Yang
,
S. J.
,
Cho
,
J. H.
,
Oh
,
G. H.
,
Nahm
,
K. S.
, and
Park
,
C. R.
, 2009, “
Easy Synthesis of Highly Nitrogen-Enriched Graphitic Carbon With a High Hydrogen Storage Capacity at Room Temperature
,”
Carbon
,
47
, pp.
1585
1591
.
90.
Kunowsky
,
M.
,
Lozar
,
J. P. M.
,
Amoros
,
D. C.
, and
Solano
,
A. L.
, 2010, “
Scale-Up Activation of Carbon Fibers for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
35
, pp.
2393
2402
.
91.
Claye
,
A.
, and
Fischer
,
J. E.
, 1999, “
Short-Range Order in Disordered Carbons: Where Does the Li Go?
,”
Electrochim. Acta
,
45
, pp.
107
120
.
92.
Hardy
,
B. J.
, and
Anton
,
D. L.
, 2009, “
Hierarchical Methodology for Modeling Hydrogen Storage Systems. Part I: Scoping Models
,”
Int. J. Hydrogen Energy
,
34
, pp.
2269
2277
.
93.
Hardy
,
B. J.
,
Anton
,
D. L.
, 2009, “
Hierarchical Methodology for Modeling Hydrogen Storage Systems. Part II: Detailed Models
,”
Int. J. Hydrogen Energy
,
34
, pp.
2992
3004
.
You do not currently have access to this content.