Heat transfer in foods is commonplace in the home and restaurant, but is also the basis for a very large industry. Foods are complex non-Newtonian soft solids or structured liquids whose thermal behavior is difficult to model; engineering understanding is needed to develop processes that are safe and products that are attractive to the consumer. The increasing incidence of obesity in the developed world, and of food shortage elsewhere, demands that the industry adopts processes that give nutritious products in environmentally acceptable ways. Heat transfer is often limited by the low thermal conductivity of foods and increasing heating and cooling rates is critical in maximizing product quality. This paper briefly reviews the heat transfer problems found in food processing, with particular reference to the modeling of heating to ensure safety, problems found in the fouling and cleaning and process plant, and how heating and cooling are used to generate food microstructure. Research challenges for the future are outlined.

References

1.
Holdsworth
,
S. D.
, and
Simpson
,
R.
, 2008,
Thermal Packaging of Processed Foods
,
Springer
,
New York
.
2.
Fennema
,
O. R.
, 1996,
Food Chemistry
,
CRC Press
,
Boca Raton, FL
.
3.
Norton
,
I. T.
,
Moore
,
S.
, and
Fryer
,
P. J.
, 2007, “
Understanding Food Structuring and Breakdown: Engineering Approaches to Obesity
,”
Obes. Rev.
,
8
, pp.
83
88
.
4.
Fryer
,
P. J.
, and
Robbins
,
P. T.
, 2005, “
Heat Transfer in Food Processing: Ensuring Product Quality and Safety
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2499
2510
.
5.
Achir
,
N.
,
Vitrac
,
O.
, and
Trystram
,
G.
, 2008, “
Simulation and Ability to Control the Surface Thermal History and Reactions During Deep Fat Frying
,”
Chem. Eng. Process.: Process Intensification
,
47
(
11
), pp.
1953
1967
.
6.
Le Reverend
,
B. J. D.
,
Fryer
,
P. J.
, and
Bakalis
,
S.
, 2009, “
Modelling Crystallization and Melting Kinetics of Cocoa Butter in Chocolate and Application to Confectionery Manufacturing
,”
Soft Matter
,
5
(
4
), pp.
891
902
.
7.
Sun
,
K. H.
,
Pyle
,
D. L.
,
Fitt
,
A. D.
,
Please
,
C. P.
,
Baines
,
M. J.
, and
Hall-Taylor
,
N.
, 2004, “
Numerical Study of 2D Heat Transfer in a Scraped Surface Heat Exchanger
,”
Comput. Fluids
,
33
(
5–6
), pp.
869
880
.
8.
Zorrilla
,
S. E.
, and
Rubiolo
,
A. C.
, 2005, “
Mathematical Modeling for Immersion Chilling and Freezing of Foods.: Part I: Model Development
,”
J. Food Eng.
,
66
(
3
), pp.
329
338
.
9.
Norton
,
I. T.
,
Fryer
,
P. J.
, and
Moore
,
S.
, 2006, “
Product/Process Integration in Food Manufacture: Engineering Sustained Health
,”
AIChE J.
,
52
(
5
), pp.
1632
1640
.
10.
Kong
,
F.
, and
Singh
,
R. P.
, 2008, “
Disintegration of Solid Foods in Human Stomach
,”
J. Food. Sci.
,
73
(
5
), pp.
R67
R80
.
11.
Kong
,
F.
, and
Singh
,
R. P.
, 2008, “
A Model Stomach System to Investigate Disintegration Kinetics of Solid Foods During Gastric Digestion
,”
J. Food. Sci.
,
73
(
5
), pp.
E202
E210
.
12.
Tharakan
,
A.
,
Norton
,
I. T.
,
Fryer
,
P. J.
, and
Bakalis
,
S.
, 2010, “
Mass Transfer and Nutrient Absorption in a Simulated Model of Small Intestine
,”
J. Food. Sci.
,
75
(
6
), pp.
E339
E346
.
13.
Kokini
,
J. L.
, 1994, “
Predicting the Rheology of Food Biopolymers Using Constitutive Models
,”
Carbohydr. Polym.
,
25
(
4
), pp.
319
329
.
14.
Ball
,
C. O.
, and
Olson
,
F. C. W.
, 1957,
Sterilization in Food Technology
,
McGraw-Hill
,
New York
.
15.
Datta
,
A. K.
,
Teixeira
,
A. A.
, and
Manson
,
J. E.
, 1986, “
Computer-Based Retort Control Logic for on-Line Correction of Process Deviations
,”
J. Food. Sci.
,
51
(
2
), pp.
480
483
.
16.
Hayakawa
,
K.-I.
, 1977, “
Mathematical Methods for Estimating Proper Thermal Processes and Their Computer Implementation
,”
Adv. Food Res.
,
23
, pp.
75
141
.
17.
Stoforos
,
N. G.
, 1995, “
Thermal Process Design
,”
Food Control
,
6
(
2
), pp.
81
94
.
18.
Peleg
,
M.
, 2006,
Advanced Quantitative Microbiology for Foods and Biosystems. Models for Predicting Growth and Inactivation
,
CRC Press
,
Boca Raton, FL
.
19.
Halder
,
A.
,
Black
,
D. G.
,
Davidson
,
P. M.
, and
Datta
,
A.
, 2010, “
Development of Associations and Kinetic Models for Microbiological Data to be Used in Comprehensive Food Safety Prediction Software
,”
J. Food. Sci.
,
75
(
6
), pp.
R107
R120
.
20.
Robbins
,
P. T.
, and
Fryer
,
P. J.
, 2003, “
The Spouted-Bed Roasting of Barley: Development of a Predictive Model for Moisture and Temperature
,”
J. Food Eng.
,
59
(
2–3
), pp.
199
208
.
21.
Mundt
,
S.
, and
Wedzicha
,
B. L.
, 2007, “
A Kinetic Model for Browning in the Baking of Biscuits: Effects of Water Activity and Temperature
,”
LWT-Food Sci. Technol.
,
40
(
6
), pp.
1078
1082
.
22.
Jousse
,
F.
,
Jongen
,
T.
,
Agterof
,
W.
,
Russell
,
S.
, and
Braat
,
P.
, 2002, “
Simplified Kinetic Scheme of Flavor Formation by the Maillard Reaction
,”
J. Food. Sci.
,
67
(
7
), pp.
2534
2542
.
23.
De Roeck
,
A.
,
Mols
,
J.
,
Duvetter
,
T.
,
Van Loey
,
A.
, and
Hendrickx
,
M.
, 2010, “
Carrot Texture Degradation Kinetics and Pectin Changes During Thermal Versus High-Pressure/High-Temperature Processing: A Comparative Study
,”
Food Chem.
,
120
(
4
), pp.
1104
1112
.
24.
Van Boekel
,
M. A.
, 2008, “
Kinetic Modeling of Food Quality: A Critical Review
,”
Compr. Rev. Food Sci. Food Saf.
,
7
(
1
), pp.
144
158
.
25.
Vanin
,
F. M.
,
Lucas
,
T.
, and
Trystram
,
G.
, 2009, “
Crust Formation and Its Role During Bread Baking
,”
Trends Food Sci. Technol.
,
20
(
8
), pp.
333
343
.
26.
Rabiey
,
L.
,
Flick
,
D.
, and
Duquenoy
,
A.
, 2007, “
3D Simulations of Heat Transfer and Liquid Flow During Sterilisation of Large Particles in a Cylindrical Vertical Can
,”
J. Food Eng.
,
82
(
4
), pp.
409
417
.
27.
Kiziltas
,
S.
,
Erdogdu
,
F.
, and
Koray Palazoglu
,
T.
, 2010, “
Simulation of Heat Transfer for Solid-Liquid Food Mixtures in Cans and Model Validation Under Pasteurization Conditions
,”
J. Food Eng.
,
97
(
4
), pp.
449
456
.
28.
Cox
,
P. W.
,
Bakalis
,
S.
,
Ismail
,
H.
,
Forster
,
R.
,
Parker
,
D. J.
, and
Fryer
,
P. J.
, 2003, “
Visualisation of Three-Dimensional Flows in Rotating Cans Using Positron Emission Particle Tracking (Pept)
,”
J. Food Eng.
,
60
(
3
), pp.
229
240
.
29.
Chen
,
C. R.
, and
Ramaswamy
,
H. S.
, 2004, “
Multiple Ramp-Variable Retort Temperature Control for Optimal Thermal Processing
,”
Food Bioproducts Process.
,
82
(
1
), pp.
78
88
.
30.
Miri
,
T.
,
Tsoukalas
,
A.
,
Bakalis
,
S.
,
Pistikopoulos
,
E. N.
,
Rustem
,
B.
, and
Fryer
,
P. J.
, 2008, “
Global Optimization of Process Conditions in Batch Thermal Sterilization of Food
,”
J. Food Eng.
,
87
(
4
), pp.
485
494
.
31.
Garcìa
,
M. -S. G. G.
,
Balsa-Canto
,
E.
,
Alonso
,
A. A.
, and
Banga
,
J. R.
, 2006, “
Computing Optimal Operating Policies for the Food Industry
,”
J. Food Eng.
,
74
(
1
), pp.
13
23
.
32.
Sendin
,
J. O. H.
,
Alonso
,
A. A.
, and
Banga
,
J. R.
, 2010, “
Efficient and Robust Multi-Objective Optimization of Food Processing: A Novel Approach With Application to Thermal Sterilization
,”
J. Food Process Eng.
,
98
(
3
), pp.
317
324
.
33.
Knoerzer
,
K.
,
Regier
,
M.
,
Hardy
,
E. H.
,
Schuchmann
,
H. P.
, and
Schubert
,
H.
, 2009, “
Simultaneous Microwave Heating and Three-Dimensional Mri Temperature Mapping
,”
Innovative Food Sci. Emerging Technol.
,
10
(
4
), pp.
537
544
.
34.
Knoerzer
,
K.
,
Regier
,
M.
, and
Schubert
,
H.
, 2006, “
Microwave Heating: A New Approach of Simulation and Validation
,”
Chem. Eng. Technol.
,
29
(
7
), pp.
796
801
.
35.
Orsat
,
V.
, and
Raghavan
,
G. S. V.
, 2005, “
Radio Frequency Processing
,”
Emerging Technologies for Food Processing
,
D. W.
Sun
, ed.,
Academic
,
London
.
36.
Fryer
,
P. J.
,
Porres-Parral
,
G.
, and
Bakalis
,
S.
, 2011, “
Multiphysics Modelling of Ohmic Heating
,”
Innovative Food Processing Technologies: Advances in Multiphysics Simulation
,
K.
Knoerzer
,
P.
Juliano
,
P.
Roupas
, and
C.
Versteeg
, eds.,
IFT Press and John Wiley and Sons
,
Chichester
, pp.
155
170
.
37.
Zhang
,
L.
, and
Fryer
,
P. J.
, 1994, “
Food Sterilization by Electrical Heating: Sensitivity to Process Parameters
,”
AIChE J.
,
40
(
5
), pp.
888
898
.
38.
Chen
,
C.
,
Abdelrahim
,
K.
, and
Beckerich
,
I.
, 2010, “
Sensitivity Analysis of Continuous Ohmic Heating Process for Multiphase Foods
,”
J. Food Eng.
,
98
(
2
), pp.
257
265
.
39.
Knoerzer
,
K.
,
Juliano
,
P.
,
Gladman
,
S.
,
Versteeg
,
C.
, and
Fryer
,
P. J.
, 2007, “
A Computational Model or Temperature and Sterility Distributions on a Pilot-Scale High-Pressure High-Temperature Process
,”
AIChE J.
,
53
(
11
), pp.
2996
3010
.
40.
Hendrickx
,
M. E.
, and
Knorr
,
D.
, 2001,
Ultra-High Pressure Treatments of Foods
,
Kluwer
,
New York
.
41.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1992, “
2-Dimensional Finite-Element Analysis of Microwave-Heating
,”
AIChE J.
,
38
(
10
), pp.
1577
1592
.
42.
Van Remmen
,
H. H.
,
Ponne
,
C. T.
,
Nijhuis
,
H. H.
,
Bartels
,
P. V.
, and
Kerkhof
,
P. J.
, 1996, “
Microwave Heating Distributions in Slabs, Spheres, and Cylinders With Relation to Food Processing
,”
J. Food. Sci.
,
61
(
6
), pp.
1105
1114
.
43.
Bows
,
J. R.
,
Patrick
,
M. L.
,
Janes
,
R.
,
Metaxas
,
A. C. R.
, and
Dibben
,
D. C.
, 1999, “
Microwave Phase Control Heating
,”
Int. J. Food Sci. Technol.
,
34
(
4
), pp.
295
304
.
44.
Nott
,
K. P.
,
Hall
,
L. D.
,
Bows
,
J. R.
,
Hale
,
M.
, and
Patrick
,
M. L.
, 1999, “
Three-Dimensional Mri Mapping of Microwave Induced Heating Patterns
,”
Int. J. Food Sci. Technol.
,
34
(
4
), pp.
305
315
.
45.
Nott
,
K. P.
,
Hall
,
L. D.
,
Bows
,
J. R.
,
Hale
,
M.
, and
Patrick
,
M. L.
, 2000, “
Mri Phase Mapping of Temperature Distributions Induced in Food by Microwave Heating
,”
Magn. Reson. Imaging
,
18
(
1
), pp.
69
79
.
46.
Knoerzer
,
K.
,
Regier
,
M.
, and
Schubert
,
H.
, 2008, “
A Computational Model for Calculating Temperature Distributions in Microwave Food Applications
,”
Innovative Food Sci. Emerging Technol.
,
9
(
3
), pp.
374
384
.
47.
Rakesh
,
V.
,
Datta
,
A. K.
,
Amin
,
M. H. G.
, and
Hall
,
L. D.
, 2009, “
Heating Uniformity and Rates in a Domestic Microwave Combination Oven
,”
J. Food Process Eng.
,
32
(
3
), pp.
398
424
.
48.
Geedipalli
,
S. S. R.
,
Rakesh
,
V.
, and
Datta
,
A. K.
, 2007, “
Modeling the Heating Uniformity Contributed by a Rotating Turntable in Microwave Ovens
,”
J. Food Eng.
,
82
(
3
), pp.
359
368
.
49.
Chen
,
H.
,
Tang
,
J.
, and
Liu
,
F.
, 2008, “
Simulation Model for Moving Food Packages in Microwave Heating Processes Using Conformal Fdtd Method
,”
J. Food Eng.
,
88
(
3
), pp.
294
305
.
50.
Ni
,
H.
,
Datta
,
A. K.
, and
Torrance
,
K. E.
, 1999, “
Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1501
1512
.
51.
Curet
,
S.
,
Rouaud
,
O.
, and
Boillereaux
,
L.
, 2009, “
Effect of Sample Size on Microwave Power Absorption within Dielectric Materials: 2D Numerical Results Versus Closed-Form Expressions
,”
AIChE J.
,
55
(
6
), pp.
1569
1583
.
52.
De Alwis
,
A. A. P.
, and
Fryer
,
P. J.
, 1990, “
The Use of Direct Resistance Heating in the Food Industry
,”
J. Food Eng.
,
11
(
1
), pp.
3
27
.
53.
Tucker
,
G. S.
,
Lambourne
,
T.
,
Adams
,
J. B.
, and
Lach
,
A.
, 2002, “
Application of a Biochemical Time-Temperature Integrator to Estimate Pasteurisation Values in Continuous Food Processes
,”
Innovative Food Sci. Emerging Technol.
,
3
(
2
), pp.
165
174
.
54.
Icier
,
F.
,
Yildiz
,
H.
, and
Baysal
,
T.
, 2006, “
Peroxidase Inactivation and Colour Changes During Ohmic Blanching of Pea Puree
,”
J. Food Eng.
,
74
(
3
), pp.
424
429
.
55.
Ghnimi
,
S.
,
Zaid
,
I.
,
Maingonnat
,
J. F.
, and
Delaplace
,
G.
, 2009, “
Axial Temperature Profile of Ohmically Heated Fluid Jet: Analytical Model and Experimental Validation
,”
Chem. Eng. Sci.
,
64
(
13
), pp.
3188
3196
.
56.
Halden
,
K.
,
De Alwis
,
A. A. P.
, and
Fryer
,
P. J.
, 1990, “
Changes in the Electrical Conductivity of Foods During Ohmic Heating
,”
Int. J. Food Sci. Technol.
,
25
(
1
), pp.
9
25
.
57.
Wang
,
W.-C.
, and
Sastry
,
S. K.
, 1993, “
Salt Diffusion Into Vegetable Tissue as a Pretreatment for Ohmic Heating: Electrical Conductivity Profiles and Vacuum Infusion Studies
,”
J. Food Eng.
,
20
(
4
), pp.
299
309
.
58.
Palaniappan
,
S.
, and
Sastry
,
S. K.
, 1991, “
Electrical Conductivities of Selected Solid Foods During Ohmic Heating
,”
J. Food Process Eng.
,
14
(
3
), pp.
221
236
.
59.
Sarang
,
S.
,
Sastry
,
S. K.
, and
Knipe
,
L.
, 2008, “
Electrical Conductivity of Fruits and Meats During Ohmic Heating
,”
J. Food Eng.
,
87
(
3
), pp.
351
356
.
60.
Wang
,
C. S.
,
Kuo
,
S. Z.
,
Kuo-Huang
,
L. L.
, and
Wu
,
J. S. B.
, 2001, “
Effect of Tissue Infrastructure on Electric Conductance of Vegetable Stems
,”
J. Food. Sci.
,
66
(
2
), pp.
284
288
.
61.
De Alwis
,
A. A. P.
,
Halden
,
K.
, and
Fryer
,
P. J.
, 1989, “
Shape and Conductivity Effects in the Ohmic Heating of Foods
,”
Chem. Eng. Res. Des.
,
67
(
2
), pp.
159
168
.
62.
Marra
,
F.
,
Zell
,
M.
,
Lyng
,
J. G.
,
Morgan
,
D. J.
, and
Cronin
,
D. A.
, 2009, “
Analysis of Heat Transfer During Ohmic Processing of a Solid Food
,”
J. Food Eng.
,
91
(
1
), pp.
56
63
.
63.
Fryer
,
P. J.
,
de Alwis
,
A. A. P.
,
Koury
,
E.
,
Stapley
,
A. G. F.
, and
Zhang
,
L.
, 1993, “
Ohmic Processing of Solid Liquid-Mixtures - Heat-Generation and Convection Effects
,”
J. Food Eng.
,
18
(
2
), pp.
101
125
.
64.
Davies
,
L. J.
,
Kemp
,
M. R.
, and
Fryer
,
P. J.
, 1999, “
The Geometry of Shadows: Effects of Inhomogeneities in Electrical Field Processing
,”
J. Food Eng.
,
40
(
4
), pp.
245
258
.
65.
De Alwis
,
A. A. P.
, and
Fryer
,
P. J.
, 1990, “
A Finite-Element Analysis of Heat-Generation and Transfer During Ohmic Heating of Food
,”
Chem. Eng. Sci.
,
45
(
6
), pp.
1547
1559
.
66.
De Alwis
,
A. A. P.
, and
Fryer
,
P. J.
, 1992, “
Operability of the Ohmic Heating Process - Electrical-Conductivity Effects
,”
J. Food Eng.
,
15
(
1
), pp.
21
48
.
67.
Sastry
,
S. K.
, 1992, “
A Model for Heating of Liquid-Particle Mixtures in a Continuous Flow Ohmic Heater
,”
J. Food Process Eng.
,
15
(
4
), pp.
263
278
.
68.
Sastry
,
S. K.
, and
Palaniappan
,
S.
, 1992, “
Mathematical Modeling and Experimental Studies on Ohmic Heating of Liquid-Particle Mixtures in a Static Heater
,”
J. Food Process Eng.
,
15
(
4
), pp.
241
261
.
69.
Ruan
,
R.
,
Chen
,
P.
,
Chang
,
K.
,
Kim
,
H. J.
, and
Taub
,
I. A.
, 1999, “
Rapid Food Particle Temperature Mapping During Ohmic Heating Using Flash Mri
,”
J. Food Sci.
,
64
(
6
), pp.
1024
1026
.
70.
Ye
,
X.
,
Ruan
,
R.
,
Chen
,
P.
,
Chang
,
K.
,
Ning
,
K.
,
Taub
,
I. A.
, and
Doona
,
C.
, 2003, “
Accurate and Fast Temperature Mapping During Ohmic Heating Using Proton Resonance Frequency Shift Mri Thermometry
,”
J. Food Eng.
,
59
(
2–3
), pp.
143
150
.
71.
Ye
,
X.
,
Ruan
,
R.
,
Chen
,
P.
,
Doona
,
C.
, and
Taub
,
I. A.
, 2003, “
Mri Temperature Mapping and Determination of Liquid-Particulate Heat Transfer Coefficient in an Ohmically Heated Food System
,”
J. Food Sci.
,
68
(
4
), pp.
1341
1346
.
72.
Tulsiyan
,
P.
,
Sarang
,
S.
, and
Sastry
,
S. K.
, 2009, “
Measurement of Residence Time Distribution of a Multicomponent System Inside an Ohmic Heater Using Radio Frequency Identification
,”
J. Food Eng.
,
93
(
3
), pp.
313
317
.
73.
Jun
,
S.
, and
Sastry
,
S.
, 2007, “
Reusable Pouch Development for Long Term Space Missions: A 3D Ohmic Model for Verification of Sterilization Efficacy
,”
J. Food Eng.
,
80
(
4
), pp.
1199
1205
.
74.
Matser
,
A. A.
,
Krebbers
,
B.
,
Van Den Berg
,
R. W.
, and
Bartels
,
P. V.
, 2004, “
Advantages of High Pressure Sterilisation on Quality of Food Products
,”
Trends Food Sci. Technol.
,
15
(
2
), pp.
79
85
.
75.
Margosch
,
D.
,
Ganzle
,
M. G.
,
Ehrmann
,
M. A.
, and
Vogel
,
R. F.
, 2004, “
Pressure Inactivation of Bacillus Endospores
,”
Appl. Environ. Microbiol.
,
70
(
12
), pp.
7321
7328
.
76.
Koutchma
,
T.
,
Guo
,
B.
,
Patazca
,
E.
, and
Parisi
,
B.
, 2005, “
High Pressure-High Temperature Sterilization: From Kinetic Analysis to Process Verification
,”
J. Food Process Eng.
,
28
(
6
), pp.
610
629
.
77.
Knoerzer
,
K.
,
Buckow
,
R.
,
Chapman
,
B.
,
Juliano
,
P.
, and
Versteeg
,
C.
, 2010, “
Carrier Optimisation in a Pilot-Scale High Pressure Sterilisation Plant—An Iterative CFD Approach Employing an Integrated Temperature Distributor (Itd)
,”
J. Food Eng.
,
97
(
2
), pp.
199
207
.
78.
Knoerzer
,
K.
,
Buckow
,
R.
,
Sanguansri
,
P.
, and
Versteeg
,
C.
, 2010, “
Adiabatic Compression Heating Coefficients for High-Pressure Processing of Water, Propylene-Glycol and Mixtures—A Combined Experimental and Numerical Approach
,”
J. Food Eng.
,
96
(
2
), pp.
229
238
.
79.
Knoerzer
,
K.
,
Buckow
,
R.
, and
Versteeg
,
C.
, 2010, “
Adiabatic Compression Heating Coefficients for High-Pressure Processing—A Study of Some Insulating Polymer Materials
,”
J. Food Eng.
,
98
(
1
), pp.
110
119
.
80.
Juliano
,
P.
,
Knoerzer
,
K.
,
Fryer
,
P. J.
, and
Versteeg
,
C.
, 2009, “
C-Botulinum Inactivation Kinetics Implemented in a Computational Model of a High-Pressure Sterilization Process
,”
Biotechnol. Prog.
,
25
(
1
), pp.
163
175
.
81.
Taoukis
,
P. S.
, and
Labuza
,
T. P.
, 1989, “
Applicability of Time-Temperature Indicators as Shelf Life Monitors of Food Products
,”
J. Food Sci.
,
54
(
4
), pp.
783
788
.
82.
Guiavarc’h
,
Y.
,
Van Loey
,
A.
,
Zuber
,
F.
, and
Hendrickx
,
M.
, 2004, “
Development Characterization and Use of a High-Performance Enzymatic Time-Temperature Integrator for the Control of Sterilization Process’ Impacts
,”
Biotechnol. Bioeng.
,
88
(
1
), pp.
15
25
.
83.
Guiavarc’h
,
Y.
,
Van Loey
,
A.
,
Zuber
,
F.
, and
Hendrickx
,
M.
, 2004, “
Bacillus Licheniformis [Alpha]-Amylase Immobilized on Glass Beads and Equilibrated at Low Moisture Content: Potentials as a Time-Temperature Integrator for Sterilisation Processes
,”
Innovative Food Sci. Emerging Technol.
,
5
(
3
), pp.
317
325
.
84.
Guiavarc’h
,
Y. P.
,
Deli
,
V.
,
Van Loey
,
A. M.
, and
Hendrickx
,
M. E.
, 2002, “
Development of an Enzymic Time Temperature Integrator for Sterilization Processes Based on Bacillus Licheniformis Alpha-Amylase at Reduced Water Content
,”
J. Food. Sci.
,
67
(
1
), pp.
285
291
.
85.
Maesmans
,
G.
,
Hendrickx
,
M.
,
De Cordt
,
S.
,
Van Loey
,
A.
,
Noronha
,
J.
, and
Tobback
,
P.
, 1994, “
Evaluation of Process Value Distribution With Time Temperature Integrators
,”
Food Res. Int.
,
27
(
5
), pp.
413
423
.
86.
Van Loey
,
A.
,
Arthawan
,
A.
,
Hendrickx
,
M.
,
Haentjens
,
T.
, and
Tobback
,
P.
, 1997, “
The Development and Use of an [Alpha]-Amylase-Based Time-Temperature Integrator to Evaluate in-Pack Pasteurization Processes
,”
Lebensm.-Wiss. Technol.
,
30
(
1
), pp.
94
100
.
87.
Tucker
,
G. S.
,
Brown
,
H. M.
,
Fryer
,
P. J.
,
Cox
,
P. W.
,
Poole Ii
,
F. L.
,
Lee
,
H. S.
, and
Adams
,
M. W. W.
, 2007, “
A Sterilisation Time-Temperature Integrator Based on Amylase From the Hyperthermophilic Organism Pyrococcus Furiosus
,”
Innovative Food Sci. Emerging Technol.
,
8
(
1
), pp.
63
72
.
88.
Guiavarc’h
,
Y. P.
,
Dintwa
,
E.
,
Van Loey
,
A. M.
,
Zuber
,
F. T.
, and
Hendrickx
,
M. E.
, 2002, “
Validation and Use of an Enzymic Time-Temperature Integrator to Monitor Thermal Impacts Inside a Solid/Liquid Model Food
,”
Biotechnol. Prog.
,
18
(
5
), pp.
1087
1094
.
89.
Mehauden
,
K.
,
Cox
,
P. W.
,
Bakafis
,
S.
,
Simmons
,
M. J. H.
,
Tucker
,
G. S.
, and
Fryer
,
P. J.
, 2007, “
A Novel Method to Evaluate the Applicability of Time Temperature Integrators to Different Temperature Profiles
,”
Innovative Food Sci. Emerging Technol.
,
8
(
4
), pp.
507
514
.
90.
Mehauden
,
K.
,
Bakalis
,
S.
,
Cox
,
P. W.
,
Fryer
,
P. J.
, and
Simmons
,
M. J. H.
, 2008, “
Use of Time Temperature Integrators for Determining Process Uniformity in Agitated Vessels
,”
Innovative Food Sci. Emerging Technol.
,
9
(
3
), pp.
385
395
.
91.
Mehauden
,
K.
,
Cox
,
P. W.
,
Bakalis
,
S.
,
Fryer
,
P. J.
,
Fan
,
X.
,
Parker
,
D. J.
, and
Simmons
,
M. J. H.
, 2009, “
The Flow of Liquid Foods in an Agitated Vessel Using PEPT: Implications for the Use of TTI to Assess Thermal Treatment
,”
Innovative Food Sci. Emerging Technol.
,
10
(
4
), pp.
643
654
.
92.
Van Der Plancken
,
I.
,
Grauwet
,
T.
,
Oey
,
I.
,
Van Loey
,
A.
, and
Hendrickx
,
M.
, 2008, “
Impact Evaluation of High Pressure Treatment on Foods: Considerations on the Development of Pressure-Temperature-Time Integrators (PTTIs)
,”
Trends Food Sci. Technol.
,
19
(
6
), pp.
337
348
.
93.
Grauwet
,
T.
,
Van Der Plancken
,
I.
,
Vervoort
,
L.
,
Hendrickx
,
M. E.
, and
Van Loey
,
A.
, 2010, “
Protein-Based Indicator System for Detection of Temperature Differences in High Pressure High Temperature Processing
,”
Food Res. Int.
,
43
(
3
), pp.
862
871
.
94.
Kern
,
D. Q.
, and
Seaton
,
R. E.
, 1959, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Br. Chem. Eng.
,
4
, pp.
258
262
.
95.
Taborek
,
J.
,
Palen
,
J. W.
,
Aoki
,
T.
,
Ritter
,
R. B.
, and
Knudsen
,
J. G.
, 1972, “
Fouling—The Major Unresolved Problem in Heat Transfer
,”
Chem. Eng. Prog.
,
68
(
2
), pp.
59
67
.
96.
Müller-Steinhagen
,
H.
,
Malayeri
,
R. R.
, and
Watkinson
,
A. P.
, 2007, eds., Heat Exchanger Fouling and Cleaning VII, ECI Symposium Series, bepress repository, www.bepress.comwww.bepress.com.
97.
Epstein
,
N.
, 1981, “
Thinking About Heat Transfer Fouling: A 5 × 5 Matrix
,”
Heat Transfer Eng.
,
4
(
1
), pp.
43
56
.
98.
Epstein
,
N.
, 1981, “
Fouling in Heat Exchangers
,”
Fouling of Heat Transfer Equipment
,
E. F. C.
Somerscales
and
J. G.
Knudsen
, eds.,
Hemisphere
,
Washington, DC
, pp.
235
253
.
99.
Epstein
,
N.
, 1981, “
Technical Aspects
(Afterword to “Fouling in Heat Exchangers”), Fouling of Heat Transfer Equipment, E. F. C. Somerscales and J. G. Knudsen, eds.,
Hemisphere
,
Washington, DC
.
100.
Changani
,
S. D.
,
Belmar-Beiny
,
M. T.
, and
Fryer
,
P. J.
, 1997, “
Engineering and Chemical Factors Associated with Fouling and Cleaning in Milk Processing
,”
Exp. Therm. Fluid Sci.
,
14
(
4
), pp.
392
406
.
101.
Verran
,
J.
, 2002, “
Biofouling in Food Processing—Biofilm or Biotransfer Potential?
,”
Food Bioproducts Process.
,
80
(
C4
), pp.
292
298
.
102.
Boulange-Petermann
,
L.
, 1996, “
Processes of Bioadhesion on Stainless Steel Surfaces and Cleanability: A Review with Special Reference to the Food Industry
,”
Biofouling
,
10
(
4
), pp.
275
300
.
103.
Fernandez-Torres
,
M. J.
,
Fitzgerald
,
A. M.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
, 2001, “
A Theoretical Study of Freezing Fouling: Limiting Behaviour Based on a Heat and Mass Transfer Analysis
,”
Chem. Process Eng.
,
40
(
4
), pp.
335
344
.
104.
Simmons
,
M. J. H.
,
Jayaraman
,
P.
, and
Fryer
,
P. J.
, 2007, “
The Effect of Temperature and Shear Rate Upon the Aggregation of Whey Protein and Its Implications for Milk Fouling
,”
J. Food Eng.
,
79
(
2
), pp.
517
528
.
105.
Rosmaninho
,
R.
, and
Melo
,
L. F.
, 2008, “
Protein-Calcium Phosphate Interactions in Fouling of Modified Stainless-Steel Surfaces by Simulated Milk
,”
Int. Dairy J.
,
18
(
1
), pp.
72
80
.
106.
Changani
,
S. D.
,
Belmar-Beiny
,
M. T.
, and
Fryer
,
P. J.
, 1997, “
Engineering and Chemical Factors Associated with Fouling and Cleaning in Milk Processing
,”
Exp. Therm. Fluid Sci.
,
14
, pp.
392
406
.
107.
Ishiyama
,
E. M.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
, 2009, “
The Effect of Fouling on Heat Transfer, Pressure Drop, and Throughput in Refinery Preheat Trains: Optimization of Cleaning Schedules
,”
Heat Transfer Eng.
,
30
(
10–11
), pp.
805
814
.
108.
Tamime
,
A. V.
, 2008,
Cleaning-in-Place: Dairy, Food and Beverage Operations
Wiley-Blackwell
,
London
.
109.
Christian
,
G. K.
,
Changani
,
S. D.
, and
Fryer
,
P. J.
, 2002, “
The Effect of Adding Minerals on Fouling From Whey Protein Concentrate: Development of a Model Fouling Fluid for a Plate Heat Exchanger
,”
Food Bioproducts Process.
,
80
(
4
), pp.
231
239
.
110.
Hooper
,
R. J.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
, 2006, “
Comparison of Whey Protein Model Foulants for Studying Cleaning of Milk Fouling Deposits
,”
Food Bioproducts Process.
,
84
(
4
), pp.
329
337
.
111.
Schutyser
,
M. A. I.
,
Straatsma
,
J.
,
Keijzer
,
P. M.
,
Verschueren
,
M.
, and
De Jong
,
P.
, 2008, “
A New Web-Based Modelling Tool (Websim-Milq) Aimed at Optimisation of Thermal Treatments in the Dairy Industry
,”
Int. J. Food Microbiol.
,
128
(
1
), pp.
153
157
.
112.
De Jong
,
P.
,
Te Giffel
,
M. C.
, and
Kiezebrink
,
E. A.
, 2002, “
Prediction of the Adherence, Growth and Release of Microorganisms in Production Chains
,”
Int. J. Food Microbiol.
,
74
(
1–2
), pp.
13
25
.
113.
De Jong
,
P.
,
Te Giffel
,
M. C.
,
Straatsma
,
H.
, and
Vissers
,
M. M. M.
, 2002, “
Reduction of Fouling and Contamination by Predictive Kinetic Models
,”
Int. Dairy J.
,
12
(
2–3
), pp.
285
292
.
114.
Benning
,
R.
,
Petermeier
,
H.
,
Delgado
,
A.
,
Hinrichs
,
J.
,
Kulozik
,
U.
, and
Becker
,
T.
, 2003, “
Process Design for Improved Fouling Behaviour in Dairy Heat Exchangers Using a Hybrid Modelling Approach
,”
Food Bioproducts Process.
,
81
(
C3
), pp.
266
274
.
115.
Petermeier
,
H.
,
Benning
,
R.
,
Delgado
,
A.
,
Kulozik
,
U.
,
Hinrichs
,
J.
, and
Becker
,
T.
, 2002, “
Hybrid Model of the Fouling Process in Tubular Heat Exchangers for the Dairy Industry
,”
J. Food Eng.
,
55
(
1
), pp.
9
17
.
116.
Jensen
,
B. B. B.
,
Friis
,
A.
,
Benezech
,
T.
,
Legentilhomme
,
P.
, and
Lelievre
,
C. L.
, 2005, “
Local Wall Shear Stress Variations Predicted by Computational Fluid Dynamics for Hygienic Design
,”
Food Bioproducts Process.
,
83
(
C1
), pp.
53
60
.
117.
Asteriadou
,
K.
,
Hasting
,
A. P. M.
,
Bird
,
M. R.
, and
Melrose
,
J.
, 2006, “
Computational Fluid Dynamics for the Prediction of Temperature Profiles and Hygienic Design in the Food Industry
,”
Food Bioproducts Process.
,
84
(
C2
), pp.
157
163
.
118.
Asteriadou
,
K.
,
Hasting
,
T.
,
Bird
,
M.
, and
Melrose
,
J.
, 2007, “
Predicting Cleaning of Equipment Using Computational Fluid Dynamics
,”
J. Food Process Eng.
,
30
(
1
), pp.
88
105
.
119.
Wilson
,
D. I.
, 2005, “
Challenges in Cleaning: Recent Developments and Future Prospects
,”
Heat Transfer Eng.
,
26
(
1
), pp.
51
59
.
120.
Fryer
,
P. J.
, and
Asteriadou
,
K.
, 2009, “
A Prototype Cleaning Map: A Classification of Industrial Cleaning Processes
,”
Trends Food Sci. Technol.
,
20
(
6–7
), pp.
255
262
.
121.
Blel
,
W.
,
Le Gentil-Lelievre
,
C.
,
Benezech
,
T.
,
Legrand
,
J.
, and
Legentilhomme
,
P.
, 2009, “
Application of Turbulent Pulsating Flows to the Bacterial Removal During a Cleaning in Place Procedure. Part 1: Experimental Analysis of Wall Shear Stress in a Cylindrical Pipe
,”
J. Food Eng.
,
90
(
4
), pp.
422
432
.
122.
Blel
,
W.
,
Legentilhomme
,
P.
,
Benezech
,
T.
,
Legrand
,
J.
, and
Le Gentil-Lelievre
,
C.
, 2009, “
Application of Turbulent Pulsating Flows to the Bacterial Removal During a Cleaning in Place Procedure. Part 2: Effects on Cleaning Efficiency
,”
J. Food Eng.
,
90
(
4
), pp.
433
440
.
123.
Burfoot
,
D.
, and
Middleton
,
K.
, 2009, “
Effects of Operating Conditions of High Pressure Washing on the Removal of Biofilms from Stainless Steel Surfaces
,”
J. Food Eng.
,
90
(
3
), pp.
350
357
.
124.
Sahu
,
K. C.
,
Valluri
,
P.
,
Spelt
,
P. D. M.
, and
Matar
,
O. K.
, 2007, “
Linear Instability of Pressure-Driven Channel Flow of a Newtonian and a Herschel-Bulkley Fluid
,”
Phys. Fluids
,
19
(
12
),
122107
.
125.
Grassi
,
B.
,
Strazza
,
D.
, and
Poesio
,
P.
, 2008, “
Experimental Validation of Theoretical Models in Two-Phase High-Viscosity Ratio Liquid-Liquid Flows in Horizontal and Slightly Inclined Pipes
,”
Int. J. Multiphase Flow
,
34
(
10
), pp.
950
965
.
126.
Henningsson
,
M.
,
Regner
,
M.
,
Ostergren
,
K.
,
Tragardh
,
C.
, and
Dejmek
,
P.
, 2007, “
Cfd Simulation and Ert Visualization of the Displacement of Yoghurt by Water on Industrial Scale
,”
J. Food Eng.
,
80
(
1
), pp.
166
175
.
127.
Cole
,
P. A.
,
Asteriadou
,
K.
,
Robbins
,
P. T.
,
Owen
,
E. G.
,
Montague
,
G. A.
, and
Fryer
,
P. J.
, “
Comparison of Cleaning of Toothpaste from Surfaces and Pilot Scale Pipework
,”
Food Bioproducts Process.
,
88
(
4
), pp.
392
400
.
128.
Plett
,
E. A.
, 1985, “
Cleaning of Fouled Surfaces
,”
Fouling and Cleaning in Food Processing
,
D. B.
Lund
,
E.
Plett
, and
C.
Sandu
, eds.,
Dept. of Food Science
,
Madison, WI
, pp.
286
311
.
129.
Mercade-Prieto
,
R.
, and
Chen
,
X. D.
, 2006, “
Dissolution of Whey Protein Concentrate Gels in Alkali
,”
AIChE J.
,
52
(
2
), pp.
792
803
.
130.
Mercade-Prieto
,
R.
,
Paterson
,
W. R.
,
Chen
,
X. D.
, and
Wilson
,
D. I.
, 2008, “
Diffusion of NaOH Into a Protein Gel
,”
Chem. Eng. Sci.
,
63
(
10
), pp.
2763
2772
.
131.
Yoo
,
J. Y.
,
Chen
,
X. D.
,
Mercade-Prieto
,
R.
, and
Wilson
,
D. I.
, 2007, “
Dissolving Heat-Induced Protein Gel Cubes in Alkaline Solutions Under Natural and Forced Convection Conditions
,”
J. Food Eng.
,
79
(
4
), pp.
1315
1321
.
132.
Bird
,
M. R.
, and
Fryer
,
P. J.
, 1991, “
An Experimental Study of the Cleaning of Surfaces Fouled by Whey Proteins
,”
Food Bioproducts Process.
,
69
, pp.
13
21
.
133.
Gillham
,
C. R.
,
Fryer
,
P. J.
,
Hasting
,
A. P. M.
, and
Wilson
,
D. I.
, 2000, “
Enhanced Cleaning of Whey Protein Soils Using Pulsed Flows
,”
J. Food Eng.
,
46
(
3
), pp.
199
209
.
134.
Gillham
,
C. R.
,
Fryer
,
P. J.
,
Hasting
,
A. P. M.
, and
Wilson
,
D. I.
, 1999, “
Cleaning-in-Place of Whey Protein Fouling Deposits: Mechanisms Controlling Cleaning
,”
Food Bioproducts Process.
,
77
(
C2
), pp.
127
136
.
135.
Christian
,
G. K.
, and
Fryer
,
P. J.
, 2006, “
The Effect of Pulsing Cleaning Chemicals on the Cleaning of Whey Protein Deposits
,”
Food Bioproducts Process.
,
84
(
C4
), pp.
320
328
.
136.
Mercade-Prieto
,
R.
,
Falconer
,
R. J.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
, 2007, “
Swelling and Dissolution of Beta-Lactoglobulin Gels in Alkali
,”
Biomacromolecules
,
8
(
2
), pp.
469
476
.
137.
Baier
,
R. E.
, 1980, “
Substrate Influences on Adhesion of Microorganisms and Their Resultant New Surface Properties
,”
Adsorption of Microorganisms to Surfaces
,
G.
Bitton
and
K. S.
Marshall
, eds.,
John Wiley & Sons, Inc.
,
New York
, p.
59
.
138.
Rosenhahn
,
A.
,
Ederth
,
T.
, and
Pettitt
,
M. E.
, 2008, “
Advanced Nanostructures for the Control of Biofouling: The FP6 EU Integrated Project Ambio
,”
BioInterphases
,
3
(
1
), pp.
IR1
IR5
.
139.
Zhao
,
Q.
,
Liu
,
Y.
,
Wang
,
C.
,
Wang
,
S.
, and
Muller-Steinhagen
,
H.
, 2005, “
Effect of Surface Free Energy on the Adhesion of Biofouling and Crystalline Fouling
,”
Chem. Eng. Sci.
,
60
(
17
), pp.
4858
4865
.
140.
Rosmaninho
,
R.
,
Rizzo
,
G.
,
Muller-Steinhagen
,
H.
, and
Melo
,
L. F.
, 2008, “
Deposition From a Milk Mineral Solution on Novel Heat Transfer Surfaces under Turbulent Flow Conditions
,”
J. Food Eng.
,
85
(
1
), pp.
29
41
.
141.
Saikhwan
,
P.
,
Geddert
,
T.
,
Augustin
,
W.
,
Scholl
,
S.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
, 2006, “
Effect of Surface Treatment on Cleaning of a Model Food Soil
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
943
951
.
142.
Liu
,
W.
,
Christian
,
G. K.
,
Zhang
,
Z.
, and
Fryer
,
P. J.
, 2006, “
Direct Measurement of the Force Required to Disrupt and Remove Fouling Deposits of Whey Protein Concentrate
,”
Int. Dairy J.
,
16
(
2
), pp.
164
172
.
143.
Liu
,
W.
,
Christian
,
G. K.
,
Zhang
,
Z.
, and
Fryer
,
P. J.
, 2002, “
Development and Use of a Micromanipulation Technique for Measuring the Force Required to Disrupt and Remove Fouling Deposits
,”
Food Bioproducts Process.
,
80
(
C4
), pp.
286
291
.
144.
Liu
,
W.
,
Fryer
,
P. J.
,
Zhang
,
Z.
,
Zhao
,
Q.
, and
Liu
,
Y.
, 2006, “
Identification of Cohesive and Adhesive Effects in the Cleaning of Food Fouling Deposits
,”
Innovative Food Sci. Emerging Technol.
,
7
(
4
), pp.
263
269
.
145.
Liu
,
W.
,
Zhang
,
Z.
, and
Fryer
,
P. J.
, 2006, “
Identification and Modelling of Different Removal Modes in the Cleaning of a Model Food Deposit
,”
Chem. Eng. Sci.
,
61
(
22
), pp.
7528
7534
.
146.
Kananeh
,
A. B.
,
Scharnbeck
,
E.
,
Kück
,
U. D.
, and
Räbiger
,
N.
, 2010, “
Reduction of Milk Fouling Inside Gasketed Plate Heat Exchanger Using Nano-Coatings
,”
Food Bioproducts Process.
,
88
(
4
), pp.
349
356
.
147.
Zhang
,
J.
,
Datta
,
A. K.
, and
Mukherjee
,
S.
, 2005, “
Transport Processes and Large Deformation During Baking of Bread
,”
AIChE J.
,
51
(
9
), pp.
2569
2580
.
148.
Frasch-Melnik
,
S.
,
Spyropoulos
,
F.
, and
Norton
,
I. T.
, 2010, “
W-1/O/W-2 Double Emulsions Stabilised by Fat Crystals—Formulation, Stability, and Salt Release
,”
J. Colloid Interface Sci.
,
350
(
1
), pp.
178
185
.
149.
Van Der Sman
,
R. G. M.
, and
Van Der Goot
,
A. J.
, 2009, “
The Science of Food Structuring
,”
Soft Matter
,
5
(
3
), pp.
501
510
.
150.
Ubbink
,
J.
,
Burbidge
,
A.
, and
Mezzenga
,
R.
, 2008, “
Food Structure and Functionality: A Soft Matter Perspective
,”
Soft Matter
,
4
(
8
), pp.
1569
1581
.
151.
Beckett
,
S. T.
, 2002,
The Science of Chocolate
,
RSC
,
London
.
152.
Ollivon
,
M.
, 2004, “
Chocolate, A Mysteriously Appealing Food
,”
Eur. J. Lipid Sci. Tech.
,
106
(
4
), pp.
205
206
.
153.
Lonchampt
,
P.
, and
Hartel
,
R. W.
, 2004, “
Fat Bloom in Chocolate and Compound Coatings
,”
Eur. J. Lipid Sci. Tech.
,
106
(
4
), pp.
241
274
.
154.
Wille
,
R. L.
, and
Lutton
,
E. S.
, 1966, “
Polymorphism of Cocoa Butter
,”
J. Am. Oil Chem. Soc.
,
43
(
8
), pp.
491
496
.
155.
Schenk
,
H.
, and
Peschar
,
R.
, 2004, “
Understanding the Structure of Chocolate
,”
Radiat. Phys. Chem.
,
71
(
3–4
), pp.
829
835
.
156.
Sonoda
,
T.
,
Takata
,
Y.
,
Ueno
,
S.
, and
Sato
,
K.
, 2004, “
DSC and Synchrotron-Radiation X-Ray Diffraction Studies on Crystallization and Polymorphic Behavior of Palm Stearin in Bulk and Oil-in-Water Emulsion States
,”
J. Am. Oil Chem. Soc.
,
81
(
4
), pp.
365
373
.
157.
Loisel
,
C.
,
Keller
,
G.
,
Lecq
,
G.
,
Bourgaux
,
C.
, and
Ollivon
,
M.
, 1998, “
Phase Transitions and Polymorphism of Cocoa Butter
,”
J. Am. Oil Chem. Soc.
,
75
(
4
), pp.
425
439
.
158.
Fessas
,
D.
,
Signorelli
,
M.
, and
Schiraldi
,
A.
, 2005, “
Polymorphous Transitions in Cocoa Butter—A Quantitative Dsc Study
,”
J. Therm Anal. Calorim.
,
82
(
3
), pp.
691
702
.
159.
Stapley
,
A. G. F.
,
Tewkesbury
,
H.
, and
Fryer
,
P. J.
, 1999, “
Effects of Shear and Temperature History on the Crystallization of Chocolate
,”
J. Am. Oil Chem. Soc.
,
76
(
6
), pp.
677
685
.
160.
Kinta
,
Y.
, and
Hartel
,
R. W.
, 2010, “
Bloom Formation on Poorly-Tempered Chocolate and Effects of Seed Addition
,”
J. Am. Oil Chem. Soc.
,
87
(
1
), pp.
19
27
.
161.
Svanberg
,
L.
,
Ahrnè
,
L.
,
Lorèn
,
N.
,
Windhab
,
E.
, 2011, “
Effect of Pre-Crystallization Process and Solid Particle Addition on Microstructure in Chocolate Model Systems
,”
Food Res. Int.
,
44
(
5
), pp.
1339
1350
.
162.
Tewkesbury
,
H.
,
Stapley
,
A. G. F.
, and
Fryer
,
P. J.
, 2000, “
Modelling Temperature Distributions in Cooling Chocolate Moulds
,”
Chem. Eng. Sci.
,
55
(
16
), pp.
3123
3132
.
163.
Le Révérend
,
B.
,
Fryer
,
P.
,
Coles
,
S.
, and
Bakalis
,
S.
, 2010, “
A Method to Qualify and Quantify the Crystalline State of Cocoa Butter in Industrial Chocolate
,”
J. Am. Oil Chem. Soc.
,
87
(
3
), pp.
239
246
.
164.
Le Reverend
,
B. J. D.
,
Smart
,
I.
,
Fryer
,
P. J.
, and
Bakalis
,
S.
, 2011, “
Modelling the Rapid Cooling and Casting of Chocolate to Predict Phase Behaviour
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1077
1086
.
You do not currently have access to this content.