In high temperature and vacuum applications, for which heat transfer is predominantly by radiation, the material’s surface texture is of substantial importance. Several micro and nanostructures designs have been proposed to enhance a material’s emissivity and its radiative coherence. Control of thermal emission is of crucial concern in the design of infrared sources, in electronic chip coolants, in high-efficiency photovoltaic cells, and in solar energy conversion. In this review paper, we present microscale and nanoscale structures supporting surface waves for obtaining polarization manipulation of thermal emission, extraordinary coherent thermal radiation, bandgap in the spectral emission, spin symmetry breaking of coupled thermal antenna array, and a broadband infrared absorption.

References

1.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Mainguy
,
S.
, and
Chen
,
Y.
, 2002, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
,
416
, pp.
61
64
.
2.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Carminati
,
R.
,
Greffet
,
J.-J.
, and
Chen
,
Y.
, 2004, “
Coherent Spontaneous Emission of Light by Thermal Sources
,”
Phys. Rev. B
,
69
, p.
155412
.
3.
Hesketh
P. J.
,
Zemel
J. N.
, and
Gebhart
,
B.
, 1986, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature (London)
,
324
, pp.
549
551
.
4.
Wolf
,
E.
, 1987, “
Noncosmological Redshifts of Spectral Lines
,”
Nature (London)
,
326
, pp.
363
365
.
5.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2005, “
Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polaritons
,”
Appl. Phys. Lett.
86
, p.
191102
.
6.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2005, “
Thermal Image Encryption Obtained With a SiO2 Space-Variant Subwavelength Grating Supporting Surface Phonon-Polaritons
,”
Opt. Lett.
,
30
, pp.
3195
3197
.
7.
Hasman
,
E.
,
Biener
,
G.
,
Niv
,
A.
, and
Kleiner
,
V.
, 2005 “
Space-Variant Polarization Manipulation
,”
Progress in Optics
, Vol. 47,
E.
Wolf
, ed.,
Elsevier
,
Amsterdam
, p.
215
.
8.
Niv
,
A.
,
Biener
,
G.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2006, “
Manipulation of the Pancharatnam Phase in Vectorial Vortices
,”
Opt. Express
,
14
, pp.
4208
4220
.
9.
Pendry
,
J. B.
, 1999, “
Radiative Exchange of Heat Between Nanostructures
,”
J. Phys.: Condens. Matter
,
11
, pp.
6621
6635
.
10.
Wilde
,
Y. De
,
Formanek
,
F.
,
Carminati
,
R.
,
Gralak
,
B.
,
Lemoine
,
P.-A.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Chen
,
Y.
, and
Greffet
,
J.-J.
, 2006, “
Thermal Radiation Scanning Tunnelling Microscopy
,”
Nature (London)
444
, pp.
740
743
.
11.
Kittel
,
A.
,
Müller-Hirsch
,
W.
,
Parisi
,
J.
,
Biehs
,
S.-A.
,
Reddig
,
D.
, and
Holthaus
,
M.
, 2005, “
Near-Field Heat Transfer in a Scanning Thermal Microscope
,”
Phys. Rev. Lett.
,
95
, p.
224301
.
12.
Rytov
,
S. M.
,
Kravtsov
,
Y. A.
, and
Tatarskii
,
V. I.
, 1989,
Principles of Statistical Radiophysics
,
Springer-Verlag
,
Berlin.
13.
Shchegrov
,
A. V.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
, 2000, “
Near-Field Spectral Effects due to Electromagnetic Surface Excitations
,”
Phys. Rev. Lett.
,
85
, pp.
1548
1551
.
14.
Carminati
,
R.
, and
Greffet
,
J.-J.
, 1999, “
Near-Field Effects in Spatial Coherence of Thermal Sources
,”
Phys. Rev. Lett.
,
82
, pp.
1660
1663
.
15.
Setälä
,
T.
,
Kaivola
,
M.
, and
Friberg
,
A. T.
, 2002, “
Degree of Polarization in Near Fields of Thermal Sources: Effects of Surface Waves
,”
Phys. Rev. Lett.
,
88
, p.
123902
.
16.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2007, “
Enhanced Coherency of Thermal Emission: Beyond the Limitation Imposed by Delocalized Surface Waves
,”
Phys. Rev. B
,
76
, p.
045427
.
17.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Extraordinary Coherent Thermal Emission From SiC Due to Coupled Resonant Cavities
,”
J. Heat Transfer
,
130
, p.
112401
.
18.
Ikeda
,
K.
,
Miyazaki
,
H. T.
,
Kasaya
,
T.
,
Yamamoto
,
K.
,
Inoue
,
Y.
,
Fujimura
,
K.
,
Kanakugi
,
T.
,
Okada
,
M.
,
Hatade
,
K.
, and
Kitagawa
,
S.
, 2008, “
Controlled Thermal Emission of Polarized Infrared Waves From Arrayed Plasmon Nanocavities
,”
Appl. Phys. Lett.
,
92
, p.
021117
.
19.
Lee
,
B. J.
,
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2005, “
Coherent Thermal Emission From One-Dimensional Photonic Crystals
,”
Appl. Phys. Lett.
,
87
, p.
071904
.
20.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2007, “
Coherent Thermal Emission From Modified Periodic Multilayer Structures
,”
J. Heat Transfer
,
129
, pp.
17
26
.
21.
Barnes
,
W. L.
,
Preist
,
T. W.
,
Kitson
,
S. C.
, and
Sambles
,
J. R.
, 1996, “
Physical Origin of Photonic Energy Gaps in the Propagation of Surface Plasmons on Gratings
,”
Phys. Rev. B
,
54
, pp.
6227
6244
.
22.
Van Hove
,
L.
, 1953, “
The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal
,”
Phys. Rev.
,
89
, pp.
1189
1193
.
23.
Pipino
,
A. C. R.
,
Van Duyne
,
R. P.
, and
Schatz
,
G. C.
, 1996, “
Surface-Enhanced Second-Harmonic Diffraction: Experimental Investigation of Selective Enhancement
,”
Phys. Rev. B
,
53
, pp.
4162
4169
.
24.
Kocabas
,
A.
,
Ertas
,
G.
,
Seckin Senlik
,
S.
, and
Aydinli
,
A.
, 2008, “
Plasmonic Band Gap Structures for Surface-Enhanced Raman Scattering
,”
Opt. Express
,
16
, pp.
12469
12477
.
25.
Kitson
,
S. C.
,
Barnes
,
W. L.
, and
Sambles
,
J. R.
, 1995, “
Surface-Plasmon Energy Gaps and Photoluminescence
,”
Phys. Rev. B
,
52
, pp.
11441
11445
.
26.
Wang
,
Y.
, and
Zhou
,
Z.
, 2006, “
Strong Enhancement of Erbium Ion Emission by a Metallic Double Grating
,”
Appl. Phys. Lett.
,
89
, p.
253122
.
27.
Weeber
,
J.-C.
,
Bouhelier
,
A.
,
Colas des Francs
,
G.
,
Markey
,
L.
, and
Dereux
,
A.
, 2007, “
Submicrometer In-Plane Integrated Surface Plasmon Cavities
,”
Nano Lett.
,
7
, pp.
1352
1359
.
28.
Descrovi
,
E.
,
Paeder
,
V.
,
Vaccaro
,
L.
, and
Herzig
,
H.-P.
, 2005, “
A Virtual Optical Probe Based on Localized Surface Plasmon Polaritons
,”
Opt. Express
,
13
, pp.
7017
1727
.
29.
Biener
,
G.
,
Dahan
,
N.
,
Niv
,
A.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Highly Coherent Thermal Emission Obtained by Plasmonic Bandgap Structures
,”
Appl. Phys. Lett.
,
92
, p.
081913
.
30.
Balin
,
I.
,
Dahan
,
N.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2010, “
Bandgap Sructure of Thermally Exited Surface Phonon Polaritons
,”
Appl. Phys. Lett.
,
96
, p.
071911
.
31.
Balin
,
I.
,
Dahan
,
N.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2009, “
Slow Surface Phonon Polaritons for Sensing in the Midinfrared Spectrum
,”
Appl. Phys. Lett.
,
94
, p.
111112
.
32.
Garetz
,
B. A.
, 1981, “
Angular Doppler Effect
,”
J. Opt. Soc. Am.
,
71
, pp.
609
611
.
33.
Lipson
,
S. G.
, 1990, “
Berry’s Phase in Optical Interferometry: A Simple Derivation
,”
Opt. Lett.
,
15
, pp.
154
155
.
34.
Bliokh
,
K. Y.
, 2009, “
Geometrodynamics of Polarized Light: Berry Phase and Spin Hall Effect in a Gradient-Index Medium
,”
J. Opt. A
,
11
, p.
094009
.
35.
Hosten
,
O.
, and
Kwiat
,
P.
, 2008, “
Observation of the Spin Hall Effect of Light via Weak Measurements
,”
Science
,
319
, pp.
787
790
.
36.
Bliokh
,
K. Y.
,
Niv
,
A.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Geometrodynamics of Spinning Light
,”
Nat. Photon.
,
2
, pp.
748
753
.
37.
Dooghin
,
A. V.
,
Kundikova
,
N. D.
,
Liberman
,
V. S.
, and
Zel’dovich
B. Y.
, 1992, “
Optical Magnus Effect
,”
Phys. Rev. A
,
45
, pp.
8204
8208
.
38.
Bliokh
,
K. Y.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Coriolis Effect in Optics: Unified Geometric Phase and Spin-Hall Effect
,”
Phys. Rev. Lett.
,
101
, p.
030404
.
39.
Gorodetski
,
Y.
,
Niv
,
A.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures
,”
Phys. Rev. Lett.
101
, p.
043903
.
40.
Dahan
,
N.
,
Gorodetski
,
K.
,
Frischwasser
,
Y.
,
Kleiner
V.
, and
Hasman
E.
, 2010, “
Geometric Doppler Effect: Spin-Split Dispersion of Thermal Radiation
,”
Phys. Rev. Lett.
,
105
, p.
136402
.
41.
Gorodetski
,
Y.
,
Nechayev
,
S.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2010, “
Plasmonic Aharonov-Bohm Effect: Optical Spin as the Magnetic Flux Parameter
,”
Phys. Rev. B
,
82
, p.
125433
.
42.
Gorodetski
,
Y.
,
Shitrit
,
N.
,
Bretner
,
I.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2009, “
Observation of Optical Spin Symmetry Breaking in Nanoapertures
,”
Nano Lett.
,
9
, pp.
3016
3019
.
43.
Mauskopf
,
P. D.
,
Bock
,
J. J.
,
Del Castillo
,
H.
,
Holzapfel
,
W. L.
, and
Lange
,
A. E.
, 1997, “
Composite Infrared Bolometers With Si3N4 Micromesh Absorbers
,”
Appl. Opt.
36
, pp.
765
771
.
44.
Becker
,
W.
,
Fettig
,
R.
, and
Ruppel
,
W.
, 1999, “
Optical and Electrical Properties of Black Gold Layers in the Far Infrared
,”
Infrared Phys. Technol.
,
40
, pp.
431
445
.
45.
Niklasson
,
G. A.
, 1987, “
Optical Properties of Gas-Evaporated Metal Particles: Effects of a Fractal Structure
,”
J. Appl. Phys.
,
62
, pp.
258
265
.
46.
O’Neill
,
P.
, and
Ignatiev
,
A.
, 1978, “
Influence of Microstructure on the Optical Properties of Particulate Materials: Gold Black
,”
Phys. Rev. B
,
18
, pp.
6540
6548
.
47.
Cathelinaud
,
M.
,
Lemarquis
,
F.
, and
Amra
,
C.
, 2002, “
Index Determination of Opaque and Semitransparent Metallic Films: Application to Light Absorbers
,”
Appl. Opt.
,
41
, pp.
2546
2554
.
48.
Bosman
,
H.
,
Lau
,
Y. Y.
, and
Gilgenbach
,
R. M.
, 2003, “
Microwave Absorption on a Thin Film
,”
Appl. Phys. Lett.
,
82
, pp.
1353
1355
.
49.
Biener
,
G.
,
Niv
,
A.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2007, “
Metallic Subwavelength Structures for a Broadband Infrared Absorption Control
,”
Opt. Lett.
,
32
, pp.
994
996
.
50.
Cohen
,
R. W.
,
Cody
,
G. D.
,
Coutts
,
M. D.
, and
Abeles
,
B.
, 1973, “
Optical Properties of Granular Silver and Gold Films
,”
Phys. Rev. B
,
8
, pp.
3689
3701
.
You do not currently have access to this content.