The present work studies numerically the heating of multilayer porous packed bed which is subjected to the microwave radiation with a rectangular waveguide. The multilayer porous packed bed consists of the layers of fine and coarse beds. The simulations of electromagnetic field are described by solving Maxwell’s equations with the finite difference time domain (FDTD) method. The flow fields and the temperature profiles are determined by the solutions of the Brinkman–Forchheimer extended Darcy model, energy, and Maxwell’s equations. The study aims to understand of the influences of layered configuration, layered thickness, and operating frequency on the transport processes in a multilayer porous packed bed. The results show that all parameters have significant effect on the distributions of electromagnetic field inside a waveguide, temperature profiles, and velocity fields within the multilayer porous packed bed.

References

1.
Prosetya
,
H.
, and
Datta
,
A. K.
, 1991, “
Batch Microwave Heating of Liquids: An Experimental Study
,”
J. Microwave Power Electromagn. Energ
y,
26
(
14
), pp.
215
226
.
2.
Swain
,
M. V. L.
,
Russell
,
S. L.
,
Clarke
,
R. N.
, and
Swain
,
M. J.
, 2004, “
The Development of Food Stimulants for Microwave Oven Testing
,”
Int. J. Food Sci. Technol.
,
39
(
6
), pp.
623
630
.
3.
Rattanadecho
,
P.
,
Suwannapum
,
N.
,
Watanasungsuit
,
A.
, and
Duangduen
,
A.
, 2007, “
Drying of Dielectric Materials Using Microwave—Continuous Belt Furnace
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
157
163
.
4.
Cha-um
,
W.
,
Pakdee
,
W.
, and
Rattanadecho
,
P.
, 2009,
“Experimental Analysis of Microwave Heating of Dielectric Materials Using a Rectangular Wave Guide (MODE: TE10) (Case Study: Water Layer and Saturated Porous Medium),”
Exp. Therm. Fluid Sci.
,
33
(
3
), pp.
472
481
.
5.
Vongpradubchai
,
S.
, and
Rattanadecho
,
P.
, 2009, “
The Microwave Processing of Wood Using a Continuous Microwave Belt Drier
,”
Chem. Eng. Process. Intensificatio
n,
48
(
5
), pp.
997
1003
.
6.
Shou-Zheng
,
Z.
, and
Han-Kui
,
C.
, 1988, “
Power Distribution Analysis in Rectangular Microwave Heating Applicator With Stratified Load
,”
J. Microwave Power Electromagn. Energ
y,
23
(
2
), pp.
139
143
.
7.
Watanabe
,
W.
, and
Ohkawa
,
S.
, 1978, “
Analysis of Power Density Distribution in Microwave Ovens
,”
J. Microwave Power Electromagn. Energ
y,
13
(
2
), pp.
173
182
.
8.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordan
,
J.
, 1992, “
Two-Dimensional Finite Element Analysis of Microwave Heating
,”
AIChE J.
,
38
, pp.
1577
1592
.
9.
Datta
,
A.
,
Prosetya
,
H.
, and
Hu
,
W.
, 1992, “
Mathematical Modeling of Batch Heating of Liquids in a Microwave Cavity
,”
J. Microwave Power Electromagn. Energy
,
27
, pp.
38
48
.
10.
Zhang
,
Q.
,
Jackson
,
T. H.
, and
Ungan
,
A.
, 2000, “
Numerical Modeling of Microwave Induced Natural Convection
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2141
2154
.
11.
Knoerzer
,
K.
,
Regier
,
M.
, and
Schubert
,
H.
, 2006, “
Microwave Heating: A New Approach of Simulation and Validation
,”
Chem. Eng. Technol.
,
29
(
7
), pp.
796
801
.
12.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2007, “
Mathematical Modeling of Continuous Flow Microwave Heating of Liquids (Effects of Dielectric Properties and Design Parameters)
,”
Int. J. Therm. Sci.
,
46
, pp.
328
341
.
13.
Chatterjee
,
S.
,
Basak
,
T.
, and
Das
,
S. K.
, 2007, “
Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study
,”
J. Food Eng.
,
79
, pp.
1269
1279
.
14.
Ni
,
H.
,
Datta
,
A. K.
, and
Torrance
,
K. E.
, 1999, “
Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1501
1512
.
15.
Datta
,
A. K.
, and
Ni
,
H.
, 2002, “
Infrared and Hot-Air-Assisted Microwave Heating of Foods for Control of Surface Moisture
,”
J. Food Eng.
,
51
(
4
), pp.
355
364
.
16.
Campanone
,
L. A.
, and
Zaritzky
,
N. E.
, 2005, “
Mathematical Analysis of Microwave Heating Process
,”
J. Food Eng.
,
69
(
3
), pp.
359
368
.
17.
Curet
,
S.
,
Rouaud
,
O.
, and
Boillereaux
,
L.
, 2008, “
Microwave Tempering and Heating in a Single-Mode Cavity: Numerical and Experimental Investigations
,”
Chem. Eng. Process.
,
47
, pp.
1656
1665
.
18.
Liu
,
F.
,
Turner
,
I.
, and
Bialkowski
,
M.
, 1994, “
A Finite-Difference Time-Domain Simulation of Power Density Distribution in a Dielectric Loaded Microwave Cavity
,”
J. Microwave Power Electromagn. Energy
,
29
, pp.
138
147
.
19.
Zhao
,
H.
, and
Turner
,
I. W.
, 1996, “
An Analysis of the Finite-Difference Time-Domain Method for Modeling the Microwave Heating of Dielectric Materials Within a Three-Dimensional Cavity System
,”
J. Microwave Power Electromagn. Energy
,
31
, pp.
199
214
.
20.
Ma
,
L. H.
,
Paul
,
D. L.
,
Pothecary
,
N.
,
Railton
,
C.
,
Bows
,
J.
,
Barratt
,
L.
, et al.
, 1995, “
Experimental Validation of a Combined Electromagnetic and Thermal FDTD Model of a Microwave-Heating Process
,”
IEEE Trans. Microwave Theory Tech.
,
43
(
11
), pp.
2565
2572
.
21.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials
,”
ASME Trans. J. Heat Transfer
124
, pp.
151
161
.
22.
Gori
,
F.
,
Gentili
,
G.
, and
Matini
,
L.
, 1987, “
Microwave Heating of Porous Media
,”
ASME Trans. J. Heat Transfer
109
, pp.
522
525
.
23.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordan
,
J.
, 1991, “
Analysis of Microwave Heating of Materials With Temperature-Dependent Properties
,”
AIChE J.
,
37
, pp.
313
322
.
24.
Barringer
,
S. A.
,
Ayappa
,
K. G.
,
Davis
,
E. A.
,
Davis
,
H. T.
, and
Gordan
,
J.
, 1995, “
Power Absorption During Microwave Heating of Emulsions and Layered Systems
,”
J. Food Sci.
,
60
, pp.
1132
1136
.
25.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
The Characteristics of Microwave Melting of Frozen Packed Beds Using a Rectangular Waveguide
,”
IEEE Trans. Microwave Theory Tech.
,
50
(
6
), pp.
1495
1502
.
26.
Rattanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002,
“Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Heating of Multi-layered Materials Using a Rectangular Wave Guide,”
ASME Trans. J. Heat Transfer
,
124
, pp.
992
996
.
27.
Rattanadecho
,
P.
, 2004, “
Theoretical and Experimental Investigation of Microwave Thawing of Frozen Layer Using a Microwave Oven (Effects of Layered Configurations and Layer Thickness)
,”
Int. J. Heat Mass Transfer
,
47
, pp.
937
945
.
28.
Basak
,
T.
, and
Meenakshi
,
A.
, 2006, “
Influence of Ceramic Supports on Microwave Heating for Composite Dielectric Food Slabs
,”
AIChE J.
,
52
(
6
), pp.
1995
2007
.
29.
Samanta
,
S. K.
, and
Basak
,
T.
, 2008, “
Theoretical Analysis of Efficient Microwave Processing of Oil-Water Emulsions Attached With Various Ceramic Plates
,”
Food Res. Int.
,
41
, pp.
386
403
.
30.
Samanta
,
S. K.
,
Basak
,
T.
, and
Sengupta
,
B.
, 2008, “
Theoretical Analysis on Microwave Heating of Oil-Water Emulsions Supported on Ceramic, Metallic or Composite Plates
,”
Int. J. Heat Mass Transfe
r,
51
(
25–26
), pp.
6136
6156
.
31.
Chaktranond
,
C.
, and
Rattanadecho
,
P.
,
“Analysis of Heat and Mass Transfer Enhancement in Porous Material Subjected to Electric Fields (Effects of Particle Sizes and Layer Arrangement),”
Exp. Therm. Fluid Sci. (in press).
32.
Wang
,
J.
, and
Schmugge
,
T.
, 1980, “
An Empirical Model for the Complex Dielectric Permittivity of Soil as a Function of Water Content
,”
IEEE Trans. Geosci. Remote Sens.
,
GE-18
(
4
), pp.
288
295
.
33.
Mur
,
G.
, 1981, “
Absorbing Boundary Conditions for the Finite Difference Approximation of the Time Domain Electromagnetic Field Equations
,”
IEEE Trans. Electromagn. Compat.
23
, pp.
377
382
.
34.
Yee
,
K. S.
, 1966, “
Numerical Solution of Initial Boundary Value Problem Involving Maxwell’s Equations in Isotropic Media
,”
IEEE Trans. Antennas Propag.
,
14
, pp.
302
307
.
35.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed.,
Springer-Verlag, Inc.
,
New York
.
36.
Ingham
,
D. B.
, and
Pop
,
I.
, 1998,
Transport Phenomena in Porous Media
,
Pergamon
,
Oxford
.
37.
Vafai
,
K.
, 2004,
Handbook of Porous Media
, Vol. II,
Marcel Dekker
,
New York
.
38.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere/McGraw-Hill
,
New York
.
You do not currently have access to this content.