The structure effects on electro-osmosis in microporous media have been studied by modeling the multiphysical transport using our numerical framework. The three-dimensional microstructures of porous media are reproduced by a random generation-growth method, and then the nonlinear governing equations for the electrokinetic transport are solved by a highly efficient lattice Poisson–Boltzmann method. The simulation results indicate that the porous structure type (granular, fibrous, or network) influences the electro-osmotic permeability significantly. At the low porosity regime (<0.4), the network structure exhibits the highest electro-osmotic permeability because of its highest surface–volume ratio among the three types of structure at the same porosity. When the porosity is high (>0.5), the granular structure leads to the highest electro-osmotic permeability due to its lower shape resistance characteristics. The present modeling results improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems, and help guide the design of porous electrodes in micro-energy systems.

References

1.
Alexander
,
A. E.
, and
Jonson
,
P.
, 1949,
Colloid Science
,
Clarendon
,
Oxford
.
2.
Tikhomolova
,
K. P.
, 1993,
Electro-Osmosis
,
Ellis Horwood
,
New York
.
3.
Reuss
,
F.
, 1809, “
Sur Un Nouvel Effect De L’electricte Galvanique
,”
Memoires de la Societe Imperiale de Naturalistes de Moscou
,
2
, pp.
327
337
.
4.
Banga
,
A. K.
, 1998,
Electrically Assisted Transdermal and Topical Drug Delivery
,
Taylor & Francis
,
London
.
5.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
, 2006,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
New York
.
6.
Oosterbroek
,
R. E.
, and
Berg
,
A. V. D.
, 2003,
Lob-on-a-Chip: Miniaturized Systems for (Bio) Chemical Analysis and Sintesis
,
Elsevier
,
Boston
.
7.
Ren
,
Y. Q.
, and
Stein
,
D.
, 2008, “
Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels
,”
Nanotechnology
,
19
(
19
), pp.
195707
.
8.
Yao
,
S. H.
, and
Santiago
,
J. G.
, 2003, “
Porous Glass Electroosmotic Pumps: Theory
,”
J. Colloid Interface Sci.
,
268
(
1
), pp.
133
142
.
9.
Zeng
,
S. L.
,
Chen
,
C. H.
,
Mikkelsen
,
J. C.
, and
Santiago
,
J. G.
, 2001, “
Fabrication and Characterization of Electroosmotic Micropumps
,”
Sens. Actuat. B Chem.
,
79
(
2–3
), pp.
107
114
.
10.
Jianhu
,
N.
,
Yitung
,
C.
,
Boehm
,
R. F.
, and
Katukota
,
S.
, 2008, “
A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production
,”
J. Heat Transf.
,
130
(
4
), p.
042409
.
11.
Depaolo
,
D. J.
, and
Orr
, Jr.
F. M.
, 2007, “
Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems
,”
Technical Report No. Office of basic energy sciences, U.S. Department of Energy
, Report No. 935430.
12.
Kitamura
,
A.
,
Fujiwara
,
K.
,
Yamamoto
,
T.
,
Nishikawa
,
S.
, and
Moriyama
,
H.
, 1999, “
Analysis of Adsorption Behavior of Cations Onto Quartz Surface by Electrical Double-Layer Model
,”
J. Nucl. Sci. Technol.
,
36
(
12
), pp.
1167
1175
.
13.
Laser
,
D. J.
, and
Santiago
,
J. G.
, 2004, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
(
6
), pp.
R35
R64
.
14.
Coelho
,
D.
,
Shapiro
,
M.
,
Thovert
,
J. F.
, and
Adler
,
P. M.
, 1996, “
Electroosmotic Phenomena in Porous Media
,”
J. Colloid Interface Sci.
,
181
(
1
), pp.
169
190
.
15.
Marino
,
S.
,
Coelho
,
D.
,
Bekri
,
S.
, and
Adler
,
P. M.
, 2000, “
Electroosmotic Phenomena in Fractures
,”
J. Colloid Interface Sci.
,
223
(
2
), pp.
292
304
.
16.
Rosanne
,
M.
,
Paszkuta
,
M.
,
Thovert
,
J. F.
, and
Adler
,
P. M.
, 2004, “
Electro-Osmotic Coupling in Compact Clays
,”
Geophys. Res. Lett.
,
31
(
18
), p.
020770
.
17.
Rosanne
,
M.
,
Paszkuta
,
M.
, and
Adler
,
P. M.
, 2006, “
Electrokinetic Phenomena in Saturated Compact Clays
,”
J. Colloid Interface Sci.
,
297
(
1
), pp.
353
364
.
18.
Gupta
,
A. K.
,
Coelho
,
D.
, and
Adler
,
P. M.
, 2006, “
Electroosmosis in Porous Solids for High Zeta Potentials
,”
J. Colloid Interface Sci.
,
303
(
2
), pp.
593
603
.
19.
Levine
,
S.
,
Marriott
,
J. R.
,
Neale
,
G.
, and
Epstein
,
N.
, 1975, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials
,”
J. Colloid Interface Sci.
,
52
(
1
), pp.
136
149
.
20.
Chien-Hsin
,
C.
, 2009, “
Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating
,”
J. Heat Transf.
,
131
(2), p.
022401
.
21.
Bhattacharyya
,
S.
, and
Nayak
,
A. K.
, “
Combined Effect of Surface Roughness and Heterogeneity of Wall Potential on Electroosmosis in Microfluidic/Nanofuidic Channels
,”
J. Fluid Eng.
, p.
041103
.
22.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
, 2002, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
285
294
.
23.
Philip
,
J. R.
, and
Wooding
,
R. A.
, 1970, “
Solution of Poisson-Boltzmann Equation About a Cylindrical Particle
,”
J. Chem. Phys.
,
52
(
2
), pp.
953
959
.
24.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
, 2004, “
Analysis of the Electroosmotic Flow in a Microchannel Packed with Homogeneous Microspheres Under Electrokinetic Wall Effect
,”
Int. J. Eng. Sci.
,
42
(
19–20
), pp.
2011
2027
.
25.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
, 2005, “
Analysis of Electroosmotic Flow in a Microchannel Packed With Microspheres
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
168
176
.
26.
Hlushkou
,
D.
,
Seidel-Morgenstern
,
A.
, and
Tallarek
,
U.
, 2005, “
Numerical Analysis of Electroosmotic Flow in Dense Regular and Random Arrays of Impermeable, Nonconducting Spheres
,”
Langmuir
,
21
(
13
), pp.
6097
6112
.
27.
Wang
,
J. K.
,
Wang
,
M.
, and
Li
,
Z. X.
, 2006, “
Lattice Poisson-Boltzmann Simulations of Electro-Osmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
,
296
(
2
), pp.
729
736
.
28.
Wang
,
M. R.
,
Wang
,
J. K.
, and
Chen
,
S. Y.
, 2007, “
Roughness and Cavitations Effects on Electro-Osmotic Flows in Rough Microchannels Using the Lattice Poisson-Boltzmann Methods
,”
J. Comput. Phys.
,
226
(
1
), pp.
836
851
.
29.
Wang
,
M.
,
Wang
,
J. K.
,
Chen
,
S. Y.
, and
Pan
,
N.
, 2006, “
Electrokinetic Pumping Effects of Charged Porous Media in Microchannels Using the Lattice Poisson-Boltzmann Method
,”
J. Colloid Interface Sci.
,
304
(
1
), pp.
246
253
.
30.
Wang
,
M.
,
Pan
,
N.
,
Wang
,
J. K.
, and
Chen
,
S. Y.
, 2007, “
Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media
,”
Commun. Comput. Phys.
,
2
, pp.
1055
1070
.
31.
Wang
,
M.
, and
Chen
,
S.
, 2007, “
Electroosmosis in Homogeneously Charged Micro- and Nanoscale Random Porous Media
,”
J. Colloid Interface Sci.
,
314
(
1
), pp.
264
273
.
32.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Predictions of Effective Physical Properties of Complex Multiphase Materials
,”
Mater. Sci. Eng.: R
,
63
(
1
), pp.
1
30
.
33.
Wang
,
M. R.
,
Wang
,
J. K.
,
Pan
,
N.
, and
Chen
,
S. Y.
, 2007, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.
34.
Wang
,
M. R.
,
He
,
J. H.
,
Yu
,
J. Y.
, and
Pan
,
N.
, 2007, “
Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials
,”
Int. J. Therm. Sci.
,
46
(
9
), pp.
848
855
.
35.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transf.
,
51
(
5–6
), pp.
1325
1331
.
36.
Wang
,
M.
, and
Chen
,
S. Y.
, 2008, “
On Applicability of Poisson-Boltzmann Equation for Micro- and Nanoscale Electroosmotic Flows
,”
Commun. Comput. Phys.
,
3
(
5
), pp.
1087
1099
.
37.
Li
,
D. Q.
, 2004,
Electrokinetics in Microfluidics
,
Academic Press
,
Oxford
.
38.
Schoch
,
R. B.
,
Han
,
J. Y.
, and
Renaud
,
P.
, 2008, “
Transport Phenomena in Nanofluidics
,”
Rev. Mod. Phys.
,
80
(
3
), pp.
839
883
.
39.
Joly
,
L.
,
Ybert
,
C.
,
Trizac
,
E.
, and
Bocquet
,
L.
, 2004, “
Hydrodynamics Within the Electric Double Layer on Slipping Surfaces
,”
Phys. Rev. Lett.
,
93
(
25
), p.
257805
.
40.
Dufrêche
,
J. F.
,
Marry
,
V.
,
Malíková
,
N.
, and
Turq
,
P.
, 2005, “
Molecular Hydrodynamics for Electro-Osmosis in Clays: From Kubo to Smoluchowski
,”
J. Mol. Liquids
,
118
(
1–3
), pp.
145
153
.
41.
Wang
,
M.
,
Liu
,
J.
, and
Chen
,
S.
, 2007, “
Similarity of Electroosmotic Flows in Nanochannels
,”
Mol. Sim.
,
33
(
3
), pp.
239
244
.
42.
Wang
,
J. K.
,
Wang
,
M.
, and
Li
,
Z. X.
, 2008, “
Lattice Evolution Solution for the Nonlinear Poisson-Boltzmann Equation in Confined Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
3
), pp.
575
583
.
43.
Wang
,
M.
, and
Kang
,
Q. J.
, 2009, “
Electrokinetic Transport in Microchannels With Random Roughness
,”
Analyt. Chem.
,
81
(
8
), pp.
2953
2961
.
44.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
329
364
.
45.
Wang
,
J. K.
,
Wang
,
M.
, and
Li
,
Z. X.
, 2007, “
A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
228
234
.
46.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
47.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2004, “
A 3d Incompressible Thermal Lattice Boltzmann Model and Its Application to Simulate Natural Convection in a Cubic Cavity
,”
J. Comput. Phys.
,
193
(
1
), pp.
260
274
.
48.
Zou
,
Q.
, and
He
,
X.
, 1997, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann Bgk Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.
49.
Rohde
,
M.
,
Kandhai
,
D.
,
Derksen
,
J. J.
, and
Van Den Akker
,
H. E. A.
, 2003, “
Improved Bounce-Back Methods for No-Slip Walls in Lattice-Boltzmann Schemes: Theory and Simulations
,”
Phys. Rev. E
,
67
(
6
), p.
066703
.
50.
Chen
,
S. Y.
,
Martinez
,
D.
, and
Mei
,
R. W.
, 1996, “
On Boundary Conditions in Lattice Boltzmann Methods
,”
Phys. Fluids
,
8
(
9
), pp.
2527
2536
.
51.
Noble
,
D. R.
,
Chen
,
S. Y.
,
Georgiadis
,
J. G.
, and
Buckius
,
R. O.
, 1995, “
A Consistent Hydrodynamic Boundary Condition for the Lattice Boltzmann Method
,”
Phys. Fluids
,
7
(
1
), pp.
203
209
.
52.
D’orazio
,
A.
, and
Succi
,
S.
, 2004, “
Simulating Two-Dimensional Thermal Channel Flows by Means of a Lattice Boltzmann Method With New Boundary Conditions
,”
Future Gen. Comput. Syst.
,
20
(
6
), pp.
935
944
.
53.
Rastogi
,
R. P.
, and
Jha
,
K. M.
, 1966, “
Cross-Phenomenological Coefficients. 3. Studies on Electroosmosis
,”
J. Phys. Chem.
,
70
(
4
), pp.
1017
1024
.
You do not currently have access to this content.