In this Technical Brief, we report on preliminary results of an experimental investigation of quenching of aqueous colloidal suspensions with graphene oxide nanosheets (GONs). Extremely dilute suspensions with only 0.0001% and 0.0002% (in mass fraction) of GONs were studied and their critical heat fluxes (CHF) during quenching were determined to increase markedly by 13.2% and 25.0%, respectively, as compared to that of pure water. Such efficient CHF enhancement was interpreted to be caused primarily by the improved wettability of the quenched surfaces, due to deposition of the fish-scale-shaped GONs resulting in self-assembly quasi-ordered microscale morphologies.
Issue Section:
Technical Briefs
References
1.
Eastman
, J. A.
, Choi
, S. U. S.
, Li
, S.
, Yu
, W.
, and Thompson
, L. J.
, 2001
, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,” Appl. Phys. Lett.
, 78
, pp. 718
–720
.10.1063/1.13412182.
Das
, S. K.
, Putra
, N.
, and Roetzel
, W.
, 2003
, “Pool Boiling Characteristics of Nano-Fluids
,” Int. J. Heat Mass Transfer
, 46
, pp. 851
–862
.10.1016/S0017-9310(02)00348-43.
You
, S. M.
, Kim
, J. H.
, and Kim
, K. H.
, 2003
, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,” Appl. Phys. Lett.
, 83
, pp. 3374
–3376
.10.1063/1.16192064.
Taylor
, R. A.
, and Phelan
, P. E.
, 2009
, “Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data
,” Int. J. Heat Mass Transfer
, 52
, pp. 5339
–5347
.10.1016/j.ijheatmasstransfer.2009.06.0405.
Kim
, H.
, 2011
, “Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-Art Review
,” Nanoscale Res. Lett.
, 6
, p. 415
.10.1186/1556-276X-6-4156.
Ahn
, H. S.
, and Kim
, M. H.
, 2012
, “A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,” ASME J. Heat Transfer
, 134
(2), p. 024001
.10.1115/1.40050657.
Kim
, S. J.
, Bang
, I. C.
, Buongiorno
, J.
, and Hu
, L. W.
, 2006
, “Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,” Appl. Phys. Lett.
, 89
, p. 153107
.10.1063/1.23608928.
Kim
, H. D.
, and Kim
, M. H.
, 2007
, “Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,” Appl. Phys. Lett.
, 91
, p. 014104
.10.1063/1.27546449.
Kim
, H.
, Ahn
, H. S.
, and Kim
, M. H.
, 2010
, “On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,” ASME J. Heat Transfer
, 132
(6), p. 061501
.10.1115/1.400074610.
Milanova
, D.
, and Kumar
, R.
, 2008
, “Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,” ASME J. Heat Transfer
, 130
(4), p. 042401
.10.1115/1.278702011.
Cieslinski
, J. T.
, and Kaczmarczyk
, T. Z.
, 2011
, “Pool Boiling of Water-Al2O3 and Water-Cu Nanofluids on Horizontal Smooth Tubes
,” Nanoscale Res. Lett.
, 6
, p. 220
.10.1186/1556-276X-6-22012.
Kwark
, S. M.
, Kumar
, R.
, Moreno
, G.
, and You
, S. M.
, 2012
, “Transient Characteristics of Pool Boiling Heat Transfer in Nanofluids
,” ASME J. Heat Transfer
, 134
(5), p. 051015
.10.1115/1.400570613.
Kedzierski
, M. A.
, 2012
, “Effect of Diamond Nanolubricant on R134a Pool Boiling Heat Transfer
,” ASME J. Heat Transfer
, 134
(5), p. 051001
.10.1115/1.400563114.
Kedzierski
, M. A.
, 2012
, “R134a/Al2O3 Nanolubricant Mixture Pool Boiling on a Rectangular Finned Surface
,” ASME J. Heat Transfer
, 134
(12), p. 121501
.10.1115/1.400713715.
Kumar
, R.
, and Milanova
, D.
, 2009
, “Effect of Surface Tension on Nanotube Nanofluids
,” Appl. Phys. Lett.
, 94
, p. 073107
.10.1063/1.308576616.
Westwater
, J. W.
, Hwalek
, J. J.
, and Irving
, M. E.
, 1986
, “Suggested Standard Method for Obtaining Boiling Curves by Quenching
,” Ind. Eng. Chem. Fundam.
, 25
, pp. 685
–692
.10.1021/i100024a03417.
Xue
, H. S.
, Fan
, J. R.
, Hong
, R. H.
, and Hu
, Y. C.
, 2007
, “Characteristic Boiling Curve of CNT Nanofluid as Determined by the Transient Calorimeter Technique
,” Appl. Phys. Lett.
, 90
, p. 184107
.10.1063/1.273665318.
Kim
, H.
, DeWitt
, G.
, McKrell
, T.
, Buongiorno
, J.
, and Hu
, L. W.
, 2009
, “On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,” Int. J. Multiphase Flow
, 35
, pp. 427
–438
.10.1016/j.ijmultiphaseflow.2009.02.00419.
Lotfi
, H.
, and Shafii
, M. B.
, 2009
, “Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,” Int. J. Therm. Sci.
, 48
, pp. 2215
–2220
.10.1016/j.ijthermalsci.2009.04.00920.
Babu
, K.
, and Kumar
, T. S. P.
, 2011
, “Effect of CNT Concentration and Agitation on Surface Heat Flux During Quenching in CNT Nanofluids
,” Int. J. Heat Mass Transfer
, 54
, pp. 106
–117
.10.1016/j.ijheatmasstransfer.2010.10.00321.
Chun
, S. Y.
, Bang
, I. C.
, Choo
, Y. J.
, and Song
, C. H.
, 2011
, “Heat Transfer Characteristics of Si and SiC Nanofluids During a Rapid Quenching and Nanoparticles Deposition Effects
,” Int. J. Heat Mass Transfer
, 54
, pp. 1217
–1223
.10.1016/j.ijheatmasstransfer.2010.10.02922.
Bolukbasi
, A.
, and Ciloglu
, D.
, 2011
, “Pool Boiling Heat Transfer Characteristics of Vertical Cylinder Quenched by SiO2-Water Nanofluids
,” Int. J. Therm. Sci.
, 50
, pp. 1013
–1021
.10.1016/j.ijthermalsci.2011.01.01123.
Park
, S. D.
, Lee
, S. W.
, Kang
, S.
, Bang
, I. C.
, Kim
, J. H.
, Shin
, H. S.
, Lee
, D. W.
, and Lee
, D. W.
, 2010
, “Effects of Nanofluids Containing Graphene-Graphene-Oxide Nanosheets on Critical Heat Flux
,” Appl. Phys. Lett.
, 97
, p. 023103
.10.1063/1.345997124.
Ghosh
, S.
, Calizo
, I.
, Teweldebrhan
, D.
, Pokatilov
, E. P.
, Nika
, D. L.
, Balandin
, A. A.
, Bao
, W.
, Miao
, F.
, and Lau
, C. N.
, 2008
, “Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,” Appl. Phys. Lett.
, 92
, p. 151911
.10.1063/1.290797725.
Chen
, Z.
, Jang
, W.
, Bao
, W.
, Lau
, C. N.
, and Dames
, C.
, 2009
, “Thermal Contact Resistance Between Graphene and Silicon Dioxide
,” Appl. Phys. Lett.
, 95
, p. 161910
.10.1063/1.324531526.
Yu
, W.
, Xie
, H.
, and Chen
, W.
, 2010
, “Experimental Investigation on Thermal Conductivity of Nanofluids Containing Graphene Oxide Nanosheets
,” J. Appl. Phys.
, 107
, p. 094317
.10.1063/1.337273327.
Baby
, T. T.
, and Ramaprabhu
, S.
, 2010
, “Investigation of Thermal and Electrical Conductivity of Graphene Based Nanofluids
,” J. Appl. Phys.
, 108
, p. 124308
.10.1063/1.351628928.
Gupta
, S. S.
, Siva
, V. M.
, Krishnan
, S.
, Sreeprasad
, T. S.
, Singh
, P. K.
, Pradeep
, T.
, and Das
, S. K.
, 2011
, “Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,” J. Appl. Phys.
, 110
, p. 084302
.10.1063/1.365045629.
Baby
, T. T.
, and Ramaprabhu
S.
, 2011
, “Enhanced Convective Heat Transfer Using Graphene Dispersed Nanofluids
,” Nanoscale Res. Lett.
, 6
, p. 289
.10.1186/1556-276X-6-28930.
Kim
, H.
, Truong
, B.
, Buongiorno
, J.
, and Hu
, L. W.
, 2011
, “On the Effect of Surface Roughness Height, Wettability, and Nanoporosity on Leidenfrost Phenomena
,” Appl. Phys. Lett.
, 98
, p. 083121
.10.1063/1.356006031.
Kandlikar
, S. G.
, 2001
, “A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,” ASME J. Heat Transfer
, 123
(6), pp. 1071
–1079
.10.1115/1.1409265Copyright © 2013 by ASME
You do not currently have access to this content.