The magneto thermodynamic aspects of micropolar fluid (blood model) through an isotropic porous medium in a nonuniform channel with rhythmically contracting walls have been investigated. The flow analysis has been discussed under long wavelength and low Reynolds number approximations. The closed form solutions are obtained for velocity components, microrotation, heat transfer, as well as the wall vorticity. The modified Newton–Raphson method is used to predict the unsteady flow separation points along the peristaltic wall. Numerical computations have been carried out for the pressure rise per wavelength. The study shows that peristaltic transport, fluid velocity, microrotation velocity, and wall shear stress are significantly affected by the nonuniform geometry of the blood vessels. Moreover, the amplitude ratio, the coupling number, the micropolar parameter, and the magnetic parameter are important parameters that affect the flow behavior.

References

1.
Latham
,
T. W.
,
1966
, “
Fluid Motion in a Peristaltic Pump
,” M.Sc. thesis, MIT, Cambridge, MA.
2.
Zien
,
T. F.
, and
Ostrach
,
S. A.
,
1970
, “
A Long Wave Approximation to Peristaltic Motion
,”
J. Biomech.
,
3
, pp.
63
75
.10.1016/0021-9290(70)90051-5
3.
Ramachandra
,
R. A.
, and
Usha
,
S.
,
1995
, “
Peristaltic Transport of Two Immiscible Viscous Fluids in a Circular Tube
,”
J. Fluid Mech.
,
298
, pp.
271
285
.10.1017/S0022112095003302
4.
Mekheimer
,
K. S.
,
Husseny
,
S. Z. A.
, and
Abd Elmaboud
,
Y.
,
2010
, “
Effects of Heat Transfer and Space Porosity on Peristaltic Flow in a Vertical Asymmetric Channel
,”
Numer. Methods Partial Differential Eq.
,
26
(
4
), pp.
747
770
.10.1002/num.20451
5.
Abd Elmaboud
,
Y.
, and
Mekheimer
,
K.
S.
,
2011
, “
Non-Linear Peristaltic Transport of a Second-Order Fluid Through a Porous Medium
,”
Appl. Math. Model.
,
35
, pp.
2695
2710
.10.1016/j.apm.2010.11.031
6.
Mekheimer
,
K. S.
,
2003
, “
Non-Linear Peristaltic Transport of Magneto-Hydrodynamic Flow in an Inclined Planar Channel
,”
AJSE
,
28
(
2
A), pp.
183
201
.
7.
Mekheimer
,
K. S.
, and
Abd Elmaboud
,
Y.
,
2008
, “
Peristaltic Flow Through a Porous Medium in an Annulus: Application of an Endoscope
,”
Appl. Math. Info. Sci.
,
2
(
1
), pp.
103
121
.
8.
El Naby
,
A. E. H. A.
,
El
Misery
,
A. E. M.
, and
Abd
El Kareem
,
M. F.
,
2006
, “
Effects of a Magnetic Field on Trapping Through Peristaltic Motion for Generalized Newtonian Fluid in Channel
,”
Physica A
,
367
, pp.
79
92
.10.1016/j.physa.2005.10.045
9.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
, pp.
799
825
.10.1017/S0022112069000899
10.
Takabatake
,
S.
, and
Ayukawa
,
K.
,
1982
, “
Numerical Study of Two Dimensional Peristaltic Flows
,”
J. Fluid Mech.
,
122
, pp.
439
465
.10.1017/S0022112082002304
11.
Takabatake
,
S.
,
Ayukawa
,
K.
, and
Mori
,
A.
,
1988
, “
Peristaltic Pumping in Circular Cylindrical Tubes: A Numerical Study of Fluid Transport and Its Efficiency
,”
J. Fluid Mech.
,
193
, pp.
267
233
.10.1017/S0022112088002149
12.
Tang
,
D.
, and
Shen
,
M.
,
1993
, “
Non-Stationary Peristaltic and Transport of a Heat-Conducting Fluid
,”
J. Math. Anal. Appl.
,
174
, pp.
265
289
.10.1006/jmaa.1993.1116
13.
Brown
,
T. D.
, and
Hung
,
T. K.
,
1977
, “
Computational and Experimental Investigations of Two-Dimensional Nonlinear Peristaltic Flows
,”
J. Fluid Mech.
,
83
, pp.
249
272
.10.1017/S0022112077001189
14.
Kumar
,
B. V. R.
, and
Naidu
,
K. B.
,
1995
, “
A Numerical Study of Peristaltic Flows
,”
Comput. Fluids
,
24
, pp.
161
176
.10.1016/0045-7930(94)00027-V
15.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
,
16
, pp.
1
18
.10.1512/iumj.1966.16.16001
16.
Abd
Elmaboud
,
Y.
,
2011
, “
Thermomicropolar Fluid Flow in a Porous Channel With Peristalsis
,”
J. Porous Media
,
14
, pp.
1033
1045
.10.1615/JPorMedia.v14.i11.70
17.
Radhakrishnamurthy
,
V.
,
Radhakrishnamacharya
,
G.
, and
Chandra
,
P.
,
1995
,
Advances in Physiological Fluid Dynamics
,
Narosa Publishing House
,
India
.
18.
Vajravelu
,
K.
, and
Radhakrishnamacharya
,
G.
,
2007
, “
Peristaltic Flow and Heat Transfer in a Vertical Porous Annulus, With Long Wave Approximation
,”
Int. J. Non-Linear Mech.
,
42
, pp.
754
759
.10.1016/j.ijnonlinmec.2007.02.014
19.
Mekheimer
,
K. S.
, and
Abd Elmaboud
,
Y.
,
2008
, “
The Influence of Heat Transfer and Magnetic Field on Peristaltic Transport of a Newtonian Fluid in a Vertical Annulus: Application of an Endoscope
,”
Phys. Lett. A
,
372
, pp.
1657
1665
.10.1016/j.physleta.2007.10.028
20.
Srinivas
,
S.
, and
Kothandapani
,
M.
,
2008
, “
Peristaltic Transport in an Asymmetric Channel With Heat Transfer: A Note
,”
Int. Communications Heat Mass Transfer
,
35
, pp.
514
522
.10.1016/j.icheatmasstransfer.2007.08.011
21.
Agrawal
,
H. L.
, and
Anwaruddin
,
B.
,
1984
, “
Peristaltic Flow of Blood in a Branch
,”
Ranchi Univ. Math. J.
,
15
,
p. 111
.
22.
Abd Elmaboud
,
Y.
,
2012
, “
Influence of Induced Magnetic Field on Peristaltic Flow in an Annulus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
685
698
.10.1016/j.cnsns.2011.05.039
23.
Mekheimer
,
K. S.
,
2008
, “
Effect of the Induced Magnetic Field on Peristaltic Flow of a Couple Stress Fluid
,”
Phys. Lett. A
,
372
, pp.
4271
4278
.10.1016/j.physleta.2008.03.059
24.
Kazakia
,
Y.
, and
Ariman
,
T.
,
1971
, “
Heat Conducting Micropolar Fluids
,”
Rheol. Acta
,
10
, pp.
319
325
.10.1007/BF01993705
25.
Ariman
,
T.
, and
Cakmak
,
A. S.
,
1968
, “
Some Basic Viscous Flows in Micropolar Fluids
,”
Rheol. Acta, Band
,
7
(3), pp.
236
242
.10.1007/BF01985784
26.
Srivastava
,
L. M.
,
Srivastava
,
V. P.
, and
Sinha
,
S. N.
,
1983
, “
Peristaltic Transport of a Physiological Fluid: I. Flow in Non-Uniform Geometry
,”
Biorheol.
,
20
, pp.
153
185
.
27.
Mekheimer
,
K. S.
,
2004
, “
Peristaltic Flow of Blood Under Effect of a Magnetic Field in Non-Uniform Channels
,”
Appl. Math. Comput.
,
153
, pp.
763
777
.10.1016/S0096-3003(03)00672-6
28.
Burden
,
R. L.
, and
Faires
,
J. D.
,
2010
,
Numerical Analysis
, 9th ed.,
Brooks-Cole
,
New York
.
You do not currently have access to this content.