This paper investigates the ultrasonic sound effect on oscillating motion and heat transfer in an oscillating heat pipe (OHP). The ultrasonic sound produced by electrically controlled piezoelectric ceramics is used to generate and maintain the oscillating motion and thereby enhance heat transfer. The results demonstrate that when an ultrasonic sound with a total electric power of 4.48 mW is added, the input power needed to start the oscillating motion can be reduced from 30 W to 18 W and the effective thermal conductivity is increased from 672.8 W/mK to 1254.7 W/mK.
Issue Section:
Technical Briefs
References
1.
Legay
, M.
, Gondrexon
, N.
, Person
, S. L.
, Boldo
, P.
, and Bontemps
, A.
, 2011
, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,” Int. J. Chem. Eng.
, 2011
, p. 670108.10.1155/2011/6701082.
Laborde
, J. L.
, Hita
, A.
, Caltagirone
, J. P.
, and Gerard
, A.
, 2000
, “Fluid Dynamics Phenomena Induced by Power Ultrasounds
,” Ultrasonics
, 38
(1
), pp. 297
–300
.10.1016/S0041-624X(99)00124-93.
Apfel
, R. E.
, 1984
, “Acoustic Cavitation Inception
,” Ultrasonics
, 22
(4
), pp. 167
–173
.10.1016/0041-624X(84)90032-54.
Neppiras
, E. A.
, 1984
, “Acoustic Cavitation Series: Part One. Acoustic Cavitation: An Introduction
,” Ultrasonics
, 22
(1
), pp. 25
-28
.10.1016/0041-624X(84)90057-X5.
Lighthill
, S. J.
, 1978
, “Acoustic Streaming
,” J. Sound Vib.
, 61
(3
), pp. 391
–418
.10.1016/0022-460X(78)90388-76.
Bartoli
, C.
, and Baffigi
, F.
, 2011
, “Effects of Ultrasonic Waves on the Heat Transfer Enhancement in Subcooled Boiling
,” Exp. Therm. Fluid Sci.
, 35
, pp. 423
–432
.10.1016/j.expthermflusci.2010.11.0027.
Kim
, H. Y.
, Kim
, Y. G.
, and Kang
, B. H.
, 2004
, “Enhancement of Natural Convection and Pool Boiling Heat Transfer via Ultrasonic Vibration
,” Int. J. Heat Mass Transfer
, 47
(12-13
), pp. 2831
–2840
.10.1016/j.ijheatmasstransfer.2003.11.0338.
Zhou
, D. W.
, Liu
, D. Y.
, Hu
, X. G.
, and Ma
, C. F.
, 2002
, “Effect of Acoustic Cavitation on Boiling Heat Transfer
,” Exp. Therm. Fluid Sci.
, 26
(8
), pp. 931
–938
.10.1016/S0894-1777(02)00201-79.
Zhou
, D.
, and Liu
, D.
, 2002
, “Boiling Heat Transfer in an Acoustic Cavitation Field
,” Chin. J. Chem. Eng.
, 10
(5
), pp. 625
–629
.10.
Wilson
, C.
, Borgmeyer
, B.
, Winholtz
, R. A.
, Ma
, H. B.
, Jacobson
, D.
, and Hussey
, D.
, 2011
, “Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,” ASME J. Heat Transfer
, 133
(6
), p. 061502
.10.1115/1.400354611.
Ma
, H. B.
, Wilson
, C.
, Yu
, Q.
, Park
, K.
, Choi
, U. S.
, and Tirumala
, M.
, 2006
, “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,” ASME J. Heat Transfer
, 128
, pp. 1213
–1216
.10.1115/1.235278912.
Thompson
, S. M.
, Cheng
, P.
, and Ma
, H. B.
, 2011
, “An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,” Int. J. Heat Mass Transfer
, 54
, pp. 3951
–3959
.10.1016/j.ijheatmasstransfer.2011.04.030Copyright © 2013 by ASME
You do not currently have access to this content.