Thermophotovoltaic (TPV) systems are very promising for waste heat recovery. This work analyzes the performance of a near-field TPV device with a gold reflecting layer on the backside of the cell. The radiative transfer from a tungsten radiator, at a temperature ranging from 1250 K to 2000 K, to an In0.18Ga0.82Sb TPV cell at 300 K is calculated using fluctuational electrodynamics. The current generation by the absorbed photon energy is modeled by the minority carrier diffusion equations considering recombination. The energy conversion efficiency of the cell is determined from the generated electrical power and the net absorbed radiant power per unit area. A parametric study of the cell efficiency considering the gap spacing and other parameters is conducted. For an emitter at temperature 1250 K, the efficiency enhancement by adding a mirror, which reduces the sub-bandgap radiation, is shown to be as much as 35% relative to a semi-infinite TPV cell. In addition, the potential for further improvement by reducing surface recombination velocity from that of a perfect ohmic contact is examined. The cell performance is shown to increase with decreasing gap spacing below a critical surface recombination velocity.

References

1.
U.S. Energy Information Administration, 2013, “International Energy Outlook 2013,” U.S. Department of Energy Report No. DOE/EIA-0484, pp. 9–20, www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf
2.
U.S. Energy Information Administration, 2011, “Annual Energy Review,” U.S. Department of Energy Report No. DOE/EIA-0384, pp. 3–34, http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
3.
Basu
,
S.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2007
,
“Microscale Radiation in Thermophotovoltaic Devices - A Review,”
Int. J. Ener. Res.
,
31
(
6
), pp.
689
716
.10.1002/er.1286
4.
Basu
,
S.
,
Zhang
,
Z.
, and
Fu
,
C.
,
2009
,
“Review of Near-Field Thermal Radiation and Its Application to Energy Conversion,”
Int. J. Ener. Res.
,
33
(
13
), pp.
1203
1232
.10.1002/er.1607
5.
Fraas
,
L. M.
, and
Partain
,
L. D.
,
2010
,
Solar Cells and Their Applications
,
Wiley
,
New York
.
6.
DiMatteo
,
R. S.
,
1996
, “
Enhanced Semiconductor Carrier Generation via Microscale Radiative Transfer; MPC—An Electric Power Finance Instrument Policy; Interreleted Innovations in Energy Energy Technologies
,” S.M. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.
7.
Whale
,
M. D.
,
1997
, “
A Fluctuational Electrodynamic Analysis of Microscale Radiative Transfer and the Design of Microscale Thermophotovoltaic Devices
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
8.
Whale
,
M. D.
, and
Cravalho
,
E. G.
,
2002
,
“Modeling and Performance of Microscale Thermophotovoltaic Energy Conversion Devices,”
IEEE Trans. Energy. Conver.
,
17
(
1
), pp.
130
142
.10.1109/60.986450
9.
Pan
,
J. L.
,
Choy
,
H. K. H.
, and
Fonstad
,
C. G.
,
2000
,
“Very Large Radiative Transfer Over Small Distances From a Black Body for Thermophotovoltaic Applications,”
IEEE Trans. Electron. Dev.
,
47
(
1
), pp.
241
249
.10.1109/16.817591
10.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2003
,
“Surface Modes for Near-Field Thermophotovoltaics,”
Appl. Phys. Lett.
,
82
(
20
), pp.
3544
3546
.10.1063/1.1575936
11.
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2006
,
“Near-Field Thermophotovoltaic Energy Conversion,”
J. Appl. Phys.
,
100
(
6
),
p. 063704
.10.1063/1.2234560
12.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
,
2008
,
“Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
305
316
.10.1016/j.jqsrt.2007.08.022
13.
Francoeur
,
M.
,
Vaillon
,
R.
, and
Mengüç
,
M. P.
,
2011
,
“Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,”
IEEE Trans. Energy. Conver.
,
26
(
2
), pp.
686
698
.10.1109/TEC.2011.2118212
14.
Ilic
,
O.
,
Jablan
,
M.
,
Joannopoulos
,
J. D.
,
Celanovic
,
I.
, and
Soljačić
,
M.
,
2012
,
“Overcoming the Black Body Limit in Plasmonic and Graphene Near-Field Thermophotovoltaic Systems,”
Opt. Express
,
20
(
S3
), pp.
A366
A384
.10.1364/OE.20.00A366
15.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
,
“Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion,”
Scientific Reports
,
3
, p.
1383
.10.1038/srep01383
16.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
,
“Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck's Blackbody Radiation Law,”
Appl. Phys. Lett.
,
92
(
13
),
p. 133106
.10.1063/1.2905286
17.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
,
“Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.10.1021/nl901208v
18.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J.-J.
,
2009
,
“Radiative Heat Transfer at the Nanoscale,”
Nat. Photonics
,
3
(
9
), pp.
514
517
.10.1038/nphoton.2009.144
19.
Ottens
,
R. S.
,
Quetschke
, V
.
,
Wise
,
S.
,
Alemi
,
A. A.
,
Lundock
,
R.
,
Mueller
,
G.
,
Reitze
,
D. H.
,
Tanner
,
D. B.
, and
Whiting
,
B. F.
,
2011
,
“Near-Field Radiative Heat Transfer Between Macroscopic Planar Surfaces,”
Phys. Rev. Lett.
,
107
(
1
),
p. 014391
.10.1103/PhysRevLett.107.014301
20.
Park
,
K.
, and
Zhang
,
Z. M.
,
2013
, “Fundamentals and Applications of Near-Field Radiative Energy Transfer,”
Frontier Heat Mass Transfer
,
4
, p.
013001
.10.5098/hmt.v4.1.3001
21.
DiMatteo
,
R. S.
,
Greiff
,
P.
,
Finberg
,
S. L.
,
Young-Waithe
,
K. A.
,
Choy
,
H. K. H.
,
Masaki
,
M. M.
, and
Fonstad
,
C. G.
,
2001
,
“Enhanced Photogeneration of Carriers in a Semiconductor Via Coupling Across a Nonisothermal Nanoscale Vacuum Gap,”
Appl. Phys. Lett.
,
79
(
12
), pp.
1894
1896
.10.1063/1.1400762
22.
Hanamura
,
K.
,
Fukai
,
H.
,
Srinivasan
,
E.
,
Asano
,
M.
, and
Masuhara
,
T.
,
2011
, “
Photovoltaic Generation of Electricity Using Near-Field Radiation
,” Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, HI, pp.
1
5
.
23.
Rytov
,
S. M.
,
Kravtsov
,
Y. A.
, and
Tatarskii
,
V. I.
,
1988
,
Principles of Statistical Radiophysics II—Correlation Theory of Random Processes
,
Springer
,
Berlin
.
24.
Francoeur
,
M.
, and
Mengüç
,
M. P.
,
2008
,
“Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
280
293
.10.1016/j.jqsrt.2007.08.017
25.
Basu
,
S.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2011
,
“Direct Calculation of Energy Streamlines in Near-Field Thermal Radiation,”
J. Quant. Spectr. Radiat. Transfer
,
112
, pp.
1149
1155
.10.1016/j.jqsrt.2010.08.027
26.
Sipe
,
J. E.
,
1987
,
“New Green-Function Formalism for Surface Optics,”
J. Opt. Soc. Am. B
,
4
(
4
), pp.
481
489
.10.1364/JOSAB.4.000481
27.
Francoeur
,
M.
,
Pinar Mengüç
,
M.
, and
Vaillon
,
R.
,
2009
,
“Solution of Near-Field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
18
), pp.
2002
2018
.10.1016/j.jqsrt.2009.05.010
28.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
29.
Wang
,
L. P.
,
Basu
,
S.
, and
Zhang
,
Z. M.
,
2011
,
“Direct and Indirect Methods for Calculating Thermal Emission From Layered Structures With Nonuniform Temperatures,”
ASME J. Heat Transfer
,
133
, p.
072701
.10.1115/1.4003543
30.
Gonzalez-Cuevas
,
J. A.
,
Refaat
,
T. F.
,
Abedin
,
M. N.
, and
Elsayed-Ali
,
H. E.
,
2006
, “
Modeling of the Temperature-Dependent Spectral Response of In1−xGaxSb Infrared Photodetectors
,”
Opt. Eng.
,
45
(
4
), p.
044001
.10.1117/1.2192772
31.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2006
,
Physics of Semiconductor Devices
,
Wiley
,
New York
.
32.
Luque
,
A.
, and
Hegedus
,
S.
,
2011
,
Handbook of Photovoltaic Science and Engineering
,
Wiley
,
New York.
33.
Adachi
,
S.
,
1982
,
“Materials Parameters of In1−xGaxAsyP1−y and Related Binaries,”
J. Appl. Phys.
,
53
, pp.
8775
8792
.10.1063/1.330480
34.
Palik
,
E. D.
,
1998
,
Handbook of Optical Constants of Solids
, Vols. 1 and 2,
Academic Press
,
San Diego
, CA.
35.
Basu
,
S.
, and
Zhang
,
Z. M.
,
2009
,
“Ultrasmall Penetration Depth in Nanoscale Thermal Radiation,”
Appl. Phys. Lett.
,
95
(
13
), p.
133104
.10.1063/1.3238315
36.
Fu
,
C. J.
, and
Tan
,
W. C.
,
2009
,
“Near-Field Radiative Heat Transfer Between Two Plane Surfaces With One Having a Dielectric Coating,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
12
), pp.
1027
1036
.10.1016/j.jqsrt.2009.02.007
37.
Zheng
,
Z. H.
, and
Xuan
,
T. M.
,
2011
,
“Enhancement or Suppression of the Near-Field Radaitve Heat Transfer Between Two Mateirals,”
Nanoscale Microscale Thermophys. Eng.
,
15
, pp.
237
251
.10.1080/15567265.2011.620596
38.
Messina
,
R.
,
Antezza
,
M.
, and
Ben-Abdallah
,
P.
,
2012
,
“Three-Body Amplification of Photon Heat Tunneling,”
Phys. Rev. Lett.
,
109
, p.
244302
.10.1103/PhysRevLett.109.244302
You do not currently have access to this content.