Infrared radiation associated with vapor-liquid phase transition of water is investigated using a suspension of cloud droplets and mid-infrared (IR) (3–5 μm) radiation absorption measurements. Recent measurements and Monte Carlo (MC) modeling performed at 60 °C and 1 atm resulted in an interfacial radiative phase-transition probability of 5 × 10−8 and a corresponding surface absorption efficiency of 3–4%, depending on wavelength. In this paper, the measurements and modeling have been extended to 75 °C in order to examine the effect of temperature on water's liquid-vapor phase-change radiation. It was found that the temperature dependence of the previously proposed phase-change absorption theoretical framework by itself was insufficient to account for observed changes in radiation absorption without a change in cloud droplet number density. Therefore, the results suggest a strong temperature dependence of cloud condensation nuclei (CCN) concentration, i.e., CCN increasing approximately a factor of two from 60 °C to 75 °C at near saturation conditions. The new radiative phase-transition probability is decreased slightly to 3 × 10−8. Theoretical results were also calculated at 50 °C in an effort to understand behavior at conditions closer to atmospheric. The results suggest that accounting for multiple interface interactions within a single droplet at wavelengths in atmospheric windows (where anomalous IR radiation is often reported) will be important. Modeling also suggests that phase-change radiation will be most important at wavelengths of low volumetric absorption, i.e., atmospheric windows such as 3–5 μm and 8–10 μm, and for water droplets smaller than stable cloud droplet sizes (<20 μm diameter), where surface effects become relatively more important. This could include unactivated, hygroscopic aerosol particles (not CCN) that have absorbed water and are undergoing dynamic evaporation and condensation. This mechanism may be partly responsible for water vapor's IR continuum absorption in these atmospheric windows.

References

1.
Ramanathan
,
V.
,
Cess
,
R. D.
,
Harrison
,
E. F.
,
Minnis
,
P.
,
Barkstrom
,
B. R.
,
Ahmad
,
E.
, and
Hartmann
,
D.
,
1989
, “
Cloud-Radiative Forcing and Climate: Results From the Earth Radiation Budget Experiment
,”
Science
,
243
(
4887
), pp.
57
63
.10.1126/science.243.4887.57
2.
Senior
,
C. A.
, and
Mitchell
,
J. F. B.
,
1993
, “
CO2 and Climate: The Impact of Cloud Parametrizations
,”
J. Clim.
,
6
, pp.
393
418
.10.1175/1520-0442(1993)006<0393:CDACTI>2.0.CO;2
3.
Petty
,
G.
,
2006
,
A First Course in Atmospheric Radiation
, 2nd ed.,
Sundog Publishing
,
Madison, WI
, pp.
269
317
.
4.
Wiscombe
,
W. J.
,
2005
, “
Scales, Tools, and Reminiscences
,”
3D Radiative Transfer in Cloudy Atmospheres
,
A.
Marshak
and
A. B.
Davis
, eds.,
Springer-Verlag
,
Berlin
, pp.
3
92
.
5.
Wang
,
K.-T.
,
2012
,
On Phase-Transition Radiation of Water: A First Fundamental Approach
,
Lambert Academic Publishing
,
Sarbrucken, Germany
.
6.
Xie
,
H.
,
Zhu
,
M.
,
Zhang
,
B.
, and
Guan
,
X.
,
2012
, “
The Review of the Phase Transition Radiation
,”
Energy Procedia
,
16
, pp.
997
1002
.10.1016/j.egypro.2012.01.159
7.
Perel'man
,
M.
,
1971
, “
Phase Transitions Caused by the Opening of New Channels in Electron–Photon Interactions
,”
Phys. Lett. A
,
37
, pp.
411
412
.10.1016/0375-9601(71)90609-8
8.
Potter
,
W. R.
, and
Hoffman
,
J. G.
,
1968
, “
Phase Transition Luminescence in Boiling Water; Evidence For Clusters
,”
Infrared Phys.
,
8
(
4
), pp.
265
270
.10.1016/0020-0891(68)90035-3
9.
Carlon
,
H. R.
,
1981
, “
Infrared Absorption By Molecular Clusters in Water Vapor
,”
J. Appl. Phys.
,
52
, pp.
3111
3115
.10.1063/1.329174
10.
Mestvirishvili
,
A. N.
,
Directovich
,
J. G.
,
Grigoriev
,
S. I.
, and
Perel'man
,
M. E.
,
1977
, “
Characteristic Radiation Due to the Phase Transitions Latent Energy
,”
Phys. Lett. A
,
60
(
2
), pp.
143
144
.10.1016/0375-9601(77)90409-1
11.
Perel'man
,
M. E.
, and
Tatartchenko
,
V. A.
,
2008
, “
Phase Transitions of the First Kind as Radiation Processes
,”
Phys. Lett. A
,
372
(
14
), pp.
2480
2483
.10.1016/j.physleta.2007.11.056
12.
Tatartchenko
,
V. A.
,
2010
, “
Infrared Characteristic Radiation of Water Condensation and Freezing in Connection With Atmospheric Phenomena
,”
Earth-Sci. Rev.
,
101
(
1–2
), pp.
24
28
.10.1016/j.earscirev.2010.03.002
13.
Tatartchenko
,
V. A.
,
2011
, “
Infrared Characteristic Radiation of Water Condensation and Freezing in Connection With Atmospheric Phenomena; Part 2: New Data
,”
Earth-Sci. Rev.
,
107
(
3–4
), pp.
311
314
.10.1016/j.earscirev.2011.04.001
14.
Tatartchenko
,
V. A.
,
2012
, “
Infrared Characteristic Radiation of Water Condensation and Freezing in Connection With Atmospheric Phenomena; Part 3: Experimental Data
,”
Earth-Sci. Rev.
,
114
, pp.
218
223
.10.1016/j.earscirev.2012.07.001
15.
Sall’
,
S.
, and
Smirnov
,
A.
,
2000
, “
Phase-Transition Radiation and the Growth of a New Phase
,”
Tech. Phys.
,
45
(
7
), pp.
849
853
.10.1134/1.1259737
16.
Ambrok
,
A.
,
Kalashnikov
,
E.
, and
Kukushkin
,
S.
,
2001
, “
Influence of Selective Heating on the Kinetics of the Late Stage of First-Order Phase Transitions
,”
Tech. Phys.
,
46
(
3
), pp.
311
315
.10.1134/1.1356482
17.
Tatartchenko
,
V. A.
,
2008
, “
Characteristic IR Radiation Accompanying Crystallization and Window of Transparency for it
,”
J. Cryst. Growth
,
310
(
3
), pp.
525
529
.10.1016/j.jcrysgro.2007.11.155
18.
Tatartchenko
,
V. A.
,
2009
, “
Infrared Laser Based on the Principle of Melt Crystallization or Vapor Condensation. Why Not?
,”
Opt. Laser Technol.
,
41
(
8
), pp.
949
952
.10.1016/j.optlastec.2009.04.001
19.
van de Hulst
,
H. C.
,
1981
,
Light Scattering by Small Particles
,
Dover Publications
,
New York
.
20.
Evans
,
B. T. N.
, and
Fournier
,
G. R.
,
1990
, “
Simple Approximation to Extinction Efficiency Valid Over All Size Parameters
,”
Appl. Opt.
,
29
(
31
), pp.
4666
4670
.10.1364/AO.29.004666
21.
Rusk
,
A. N.
,
Williams
,
D.
, and
Querry
,
M. R.
,
1971
, “
Optical Constants of Water in the Infrared
,”
J. Opt. Soc. Am.
,
61
(
7
), pp.
895
903
.10.1364/JOSA.61.000895
22.
White
,
K. O.
,
Watkins
,
W. R.
,
Bruce
,
C. W.
,
Meredith
,
R. E.
, and
Smith
,
F. G.
,
1978
, “
Water Vapor Continuum Absorption in the 3.5–4.0-μm Region
,”
Appl. Opt.
,
17
(
17
), pp.
2711
2720
.10.1364/AO.17.002711
23.
Brewster
,
M. Q.
,
1992
,
Thermal Radiative Transfer and Properties
,
John Wiley & Sons
,
New York
.
24.
Wang
,
K.-T.
, and
Brewster
,
M. Q.
,
2010
, “
Phase-Transition Radiation in Vapor Condensation Process
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
945
949
.10.1016/j.icheatmasstransfer.2010.06.019
25.
Seinfeld
,
J. H.
, and,
Pandis
S. N.
,
2006
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
, 2nd ed.,
John Wiley & Sons
,
New York
.
26.
Christensen
,
S. I.
, and
Petters
,
M. D.
,
2012
, “
The Role of Temperature in Cloud Droplet Activation
,”
J. Phys. Chem. A
,
116
, pp.
9706
9717
.10.1021/jp3064454
You do not currently have access to this content.