Fins are essentially used in diverse engineering applications to increase the heat transfer between the hot and cold media. In this paper, a technique for computing the analytic approximate solution of the nonlinear differential equations resulting from heat transfer problems, in particular through fins, is developed. The simplicity of the approach presented here is due to its base functions, which makes this method straightforward to apply and formulate without any need for discretization. Analysis of the error and comparisons with the other methods are presented. A few physically interesting fin problems of heat transfer are treated to illustrate that the proposed algorithm generates highly accurate solutions.

References

1.
Lienard
,
J. H.
,
2011
,
A Heat Transfer Textbook
,
Phlogiston Press
, Cambridge, MA.
2.
Sunden
,
B.
, and
Heggs
,
P. J.
,
2000
,
Recent Advances in Analysis of Heat Transfer for Fin Type Surfaces
,
WIT Press
, Boston, MA.
3.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2008
, “
Efficiency and Optimization of Straight Fins With Combined Heat and Mass Transfer–An Analytical Solution
,”
Appl. Therm. Eng.
,
28
(17–18), pp.
2279
2288
.10.1016/j.applthermaleng.2008.01.003
4.
Moitsheki
,
R. J.
,
Hayat
,
T.
, and
Malik
,
M. Y.
,
2010
, “
Some Exact Solutions of the fin Problem With a Power law Temperature-Dependent Thermal Conductivity
,”
Nonlinear Anal.: Real World Appl.
,
11
, pp.
3287
3294
.10.1016/j.nonrwa.2009.11.021
5.
Turkyilmazoglu
,
M.
,
2012
, “
Exact Solutions to Heat Transfer in Straight Fins of Varying Exponential Shape Having Temperature Dependent Properties
,”
Int. J. Therm. Sci.
,
55
, pp.
69
79
.10.1016/j.ijthermalsci.2011.12.019
6.
Aziz
,
A.
, and
Hug
,
E.
,
1995
, “
Perturbation Solution for Convecting fin With Variable Thermal Conductivity
,”
ASME J. Heat Transfer
,
97
(
2
), pp.
300
310
.10.1115/1.3450361
7.
Bert
,
C. W.
,
2001
, “
Application of Differential Transform Method to Heat Conduction in Tapered Fins
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
2008
2009
.10.1115/1.1423316
8.
Abbasbandy
,
S.
,
2006
, “
The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
, pp.
109
113
.10.1016/j.physleta.2006.07.065
9.
Rashidi
,
M. M.
, and
Erfani
,
E.
,
2009
, “
New Analytical Method for Solving Burgers' and Nonlinear Heat Transfer Equations and Comparison With HAM
,”
Comput. Phys. Commun.
,
180
(9), pp.
1539
1544
.10.1016/j.cpc.2009.04.009
10.
Hajmohammadi
,
M. R.
, and
Nourazar
,
S. S.
,
2014
, “
Conjugate Forced Convection Heat Transfer From a Heated Flat Plate of Finite Thickness and Temperature-Dependent Thermal Conductivity
,”
Heat Transfer Eng.
,
35
(9), pp.
863
874
.10.1080/01457632.2014.852896
11.
Singer
,
I.
, and
Turkel
,
E.
,
1998
, “
High-Order Finite Difference Method for the Helmholtz Equation
,”
Comput. Meth. Appl. Mech. Eng.
,
163
, pp.
343
358
.10.1016/S0045-7825(98)00023-1
12.
Wrobel
,
L. C.
,
2002
,
The Boundary Element Method. Applications in Thermofluids and Acoustics
,
Wiley
, New York.
13.
Atkinson
,
K. E.
,
1997
,
The Numerical Solution of Integral Equations of the Second Kind
,
Cambridge University
, Cambridge, UK.
14.
Chen
,
C. S.
, and
Chen
,
C. C.
,
2010
, “
Numerical Solution for the Hyperbolic Heat Conduction Problems in the Radial-Spherical Coordinate System Using a Hybrid Green's Function Method
,”
Int. J. Therm. Sci.
,
49
, pp.
1193
1196
.10.1016/j.ijthermalsci.2010.01.018
15.
Orzechowski
,
T.
,
2007
, “
Determining Local Values of the Heat Transfer Coefficient on a fin Surface
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
947
955
.10.1016/j.expthermflusci.2006.10.005
16.
Castell
,
A.
,
Sole
,
C.
,
Medrano
,
M.
,
Roca
,
J.
,
Cabeza
,
L. F.
, and
Garcia
,
D.
,
2008
, “
Natural Convection Heat Transfer Coefficients in Phase Change Material (pcm) Modules With External Vertical Fins
,”
Appl. Therm. Eng.
,
28
, pp.
1676
1686
.10.1016/j.applthermaleng.2007.11.004
17.
Turkyilmazoglu
,
M.
,
2013
, “
Effective Computation of Exact and Analytic Approximate Solutions to Singular Nonlinear Equations of Lane-Emden-Fowler Type
,”
Appl. Math. Modell.
,
37
, pp.
7539
7548
.10.1016/j.apm.2013.02.014
18.
Turkyilmazoglu
,
M.
,
2013
, “
An Effective Approach for Numerical Solutions of High-Order Fredholm Integro-Differential Equations
,”
Appl. Math. Comput.
,
15
, pp.
384
398
.10.1016/j.amc.2013.10.079
19.
Aziz
,
A.
, and
Na
,
T. Y.
,
1984
,
Perturbation Method in Heat Transfer
,
Hemisphere
, Washington, DC.
20.
Yaghoobi
,
H.
, and
Torabi
,
M.
,
2011
, “
The Application of Differential Transformation Method to Nonlinear Equations Arising in Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
815
820
.10.1016/j.icheatmasstransfer.2011.03.025
21.
Nakayama
,
A.
, and
Kohama
,
H.
,
1987
, “
A General Similarity Transformation for Combined Free and Forced-Convection Flows Within a Fluid-Saturated Porous Medium
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
1041
1045
.10.1115/1.3248180
22.
Magyari
,
E.
,
Pop
,
I.
, and
Keller
,
B.
,
2001
, “
Exact Dual Solutions Occurring in Darcy Mixed Convection Flow
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4563
4566
.10.1016/S0017-9310(01)00054-0
23.
Moradi
,
A.
, and
Ahmadikia
,
H.
,
2010
, “
Analytical Solution for Different Profiles of fin With Temperature-Dependent Thermal Conductivity
,”
Math. Prob. Eng.
,
2010
, pp.
1
15
.10.1155/2010/568263
You do not currently have access to this content.