During the past decade, research on carbon nanotubes has revealed potential advances in thermal engineering applications. The present study investigates the radiative absorption and reflection of vertically aligned carbon nanotubes (VACNTs) in the broad spectrum from the near-infrared to far-infrared regions. The optical constants of VACNT are modeled based on the dielectric function of graphite and an effective medium approach that treats the CNT film as a homogenized medium. Calculated radiative properties show characteristics of near-unity index matching and high absorptance up to around 20 μm wavelength. The packing density and degree of alignment are shown to affect the predicted radiative properties. The Brewster angle and penetration depth of VACNTs are examined in the infrared spectrum. The radiative properties for VACNT thin films are also evaluated, showing some reduction of absorptance in the near-infrared due to transmission for film thicknesses less than 50 μm. This study provides a better understanding of the infrared behavior of VACNT and may guide the design for its applications in energy harvesting, space-borne detectors, and stealth technology.

References

1.
Zhang
,
Z. M.
, and
Ye
,
H.
,
2013
, “
Measurement of Radiative Properties of Engineered Micro-Nanostructures
,”
Annu. Rev. Heat Transfer
,
16
(
16
), pp.
345
396
.10.1615/AnnualRevHeatTransfer.v16.120
2.
Tarasov
,
M.
,
Svensson
,
J.
,
Kuzmin
,
L.
, and
Campbell
,
E. E. B.
,
2007
, “
Carbon Nanotube Bolometers
,”
Appl. Phys. Lett.
,
90
(
16
), p.
163503
.10.1063/1.2722666
3.
Itkis
,
M. E.
,
Borondics
,
F.
,
Yu
,
A.
, and
Haddon
,
R. C.
,
2006
, “
Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films
,”
Science
,
312
(
5772
), pp.
413
416
.10.1126/science.1125695
4.
Lehman
,
J.
,
Sanders
,
A.
,
Hanssen
,
L.
,
Wilthan
,
B.
,
Zeng
,
J.
, and
Jensen
,
C.
,
2010
, “
Very Black Infrared Detector From Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate
,”
Nano Lett.
,
10
(
9
), pp.
3261
3266
.10.1021/nl100582j
5.
Lehman
,
J. H.
,
Hurst
,
K. E.
,
Radojevic
,
A. M.
,
Dillon
,
A. C.
, and
Osgood
,
R. M.
, Jr.
,
2007
, “
Multiwall Carbon Nanotube Absorber on a Thin-Film Lithium Niobate Pyroelectric Detector
,”
Opt. Lett.
,
32
(
7
), pp.
772
774
.10.1364/OL.32.000772
6.
Lehman
,
J. H.
,
Engtrakul
,
C.
,
Gennett
,
T.
, and
Dillon
,
A. C.
,
2005
, “
Single-Wall Carbon Nanotube Coating on a Pyroelectric Detector
,”
Appl. Opt.
,
44
(
4
), pp.
483
488
.10.1364/AO.44.000483
7.
Theocharous
,
E.
,
Deshpande
,
R.
,
Dillon
,
A. C.
, and
Lehman
,
J.
,
2006
, “
Evaluation of a Pyroelectric Detector With a Carbon Multiwalled Nanotube Black Coating in the Infrared
,”
Appl. Opt.
,
45
(
6
), pp.
1093
1097
.10.1364/AO.45.001093
8.
Chen
,
C.
,
Lu
,
Y.
,
Kong
,
E. S.
,
Zhang
,
Y.
, and
Lee
,
S.-T.
,
2008
, “
Nanowelded Carbon-Nanotube-Based Solar Microcells
,”
Small
,
4
(
9
), pp.
1313
1318
.10.1002/smll.200701309
9.
Lenert
,
A.
,
Bierman
,
D. M.
,
Nam
,
Y.
,
Chan
,
W. R.
,
Celanovic
,
I.
,
Soljacic
,
M.
, and
Wang
,
E. N.
,
2014
, “
A Nanophotonic Solar Thermophotovoltaic Device
,”
Nat. Nanotechnol.
,
9
(
2
), pp.
126
130
.10.1038/nnano.2013.286
10.
de Heer
,
W. A.
,
Bacsa
,
W. S.
,
Châtelain
,
A.
,
Gerfin
,
T.
,
Humphrey-Baker
,
R.
,
Forro
,
L.
, and
Ugarte
,
D.
,
1995
, “
Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties
,”
Science
,
268
(
5212
), pp.
845
847
.10.1126/science.268.5212.845
11.
Yang
,
Z.-P.
,
Ci
,
L.
,
Bur
,
J. A.
,
Lin
,
S.-Y.
, and
Ajayan
,
P. M.
,
2008
, “
Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array
,”
Nano Lett.
,
8
(
2
), pp.
446
451
.10.1021/nl072369t
12.
Yang
,
Z.-P.
,
Hsieh
,
M.-L.
,
Bur
,
J. A.
,
Ci
,
L.
,
Hanssen
,
L. M.
,
Wilthan
,
B.
,
Ajayan
,
P. M.
, and
Lin
,
S.-Y.
,
2011
, “
Experimental Observation of Extremely Weak Optical Scattering From an Interlocking Carbon Nanotube Array
,”
Appl. Opt.
,
50
(
13
), pp.
1850
1855
.10.1364/AO.50.001850
13.
Mizuno
,
K.
,
Ishii
,
J.
,
Kishida
,
H.
,
Hayamizu
,
Y.
,
Yasuda
,
S.
,
Futaba
,
D. N.
,
Yumura
,
M.
, and
Hata
,
K.
,
2009
, “
A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes
,”
Proc. Nat. Acad. Sci. USA
,
106
(
15
), pp.
6044
6047
.10.1073/pnas.0900155106
14.
Wang
,
X. J.
,
Wang
,
L. P.
,
Adewuyi
,
O. S.
,
Cola
,
B. A.
, and
Zhang
,
Z. M.
,
2010
, “
Highly Specular Carbon Nanotube Absorbers
,”
Appl. Phys. Lett.
,
97
(
16
), p.
163116
.10.1063/1.3502597
15.
Wang
,
X. J.
,
Flicker
,
J. D.
,
Lee
,
B. J.
,
Ready
,
W. J.
, and
Zhang
,
Z. M.
,
2009
, “
Visible and Near-Infrared Radiative Properties of Vertically Aligned Multi-Walled Carbon Nanotubes
,”
Nanotechnology
,
20
(
21
), p.
215704
.10.1088/0957-4484/20/21/215704
16.
Ye
,
H.
,
Wang
,
X. J.
,
Lin
,
W.
,
Wong
,
C. P.
, and
Zhang
,
Z. M.
,
2012
, “
Infrared Absorption Coefficients of Vertically Aligned Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
101
(
14
), p.
141909
.10.1063/1.4757395
17.
Ugawa
,
A.
,
Rinzler
,
A. G.
, and
Tanner
,
D. B.
,
1999
, “
Far-Infrared Gaps in Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
60
(
16
), p.
R11305
.10.1103/PhysRevB.60.R11305
18.
Maine
,
S.
,
Koechlin
,
C.
,
Rennesson
,
S.
,
Jaeck
,
J.
,
Salort
,
S.
,
Chassagne
,
B.
,
Pardo
,
F.
,
Pelouard
,
J.-L.
, and
Haïdar
,
R.
,
2012
, “
Complex Optical Index of Single Wall Carbon Nanotube Films From the Near-Infrared to the Terahertz Spectral Range
,”
Appl. Opt.
,
51
(
15
), pp.
3031
3035
.10.1364/AO.51.003031
19.
Kampfrath
,
T.
,
von Volkmann
,
K.
,
Aguirre
,
C. M.
,
Desjardins
,
P.
,
Martel
,
R.
,
Krenz
,
M.
,
Frischkorn
,
C.
,
Wolf
,
M.
, and
Perfetti
,
L.
,
2008
, “
Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films
,”
Phys. Rev. Lett.
,
101
(
26
), p.
267403
.10.1103/PhysRevLett.101.267403
20.
Nishimura
,
H.
,
Minami
,
N.
, and
Shimano
,
R.
,
2007
, “
Dielectric Properties of Single-Walled Carbon Nanotubes in the Terahertz Frequency Range
,”
Appl. Phys. Lett.
,
91
(
1
), p.
011108
.10.1063/1.2753747
21.
Maeng
,
I.
,
Kang
,
C.
,
Oh
,
S. J.
,
Son
,
J.-H.
,
An
,
K. H.
, and
Lee
,
Y. H.
,
2007
, “
Terahertz Electrical and Optical Characteristics of Double-Walled Carbon Nanotubes and Their Comparison With Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
90
(
5
), p.
051914
.10.1063/1.2435338
22.
Kumar
,
S.
,
Kamaraju
,
N.
,
Moravsky
,
A.
,
Loutfy
,
R. O.
,
Tondusson
,
M.
,
Freysz
,
E.
, and
Sood
,
A. K.
,
2010
, “
Terahertz Time Domain Spectroscopy to Detect Low-Frequency Vibrations of Double-Walled Carbon Nanotubes
,”
Eur. J. Inorg. Chem.
,
2010
(
27
), pp.
4363
4366
.10.1002/ejic.201000524
23.
Paul
,
M. J.
,
Kuhta
,
N. A.
,
Tomaino
,
J. L.
,
Jameson
,
A. D.
,
Maizy
,
L. P.
,
Sharf
,
T.
,
Rupesinghe
,
N. L.
,
Teo
,
K. B. K.
,
Inampudi
,
S.
,
Podolskiy
, V
. A.
,
Minot
,
E. D.
, and
Lee
,
Y.-S.
,
2012
, “
Terahertz Transmission Ellipsometry of Vertically Aligned Multi-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
101
(
11
), p.
111107
.10.1063/1.4752158
24.
Puretzky
,
A. A.
,
Geohegan
,
D. B.
,
Jesse
,
S.
,
Ivanov
, I
. N.
, and
Eres
,
G.
,
2005
, “
In situ Measurements and Modeling of Carbon Nanotube Array Growth Kinetics During Chemical Vapor Deposition
,”
Appl. Phys. A
,
81
(
2
), pp.
223
240
.10.1007/s00339-005-3256-7
25.
Murakami
,
Y.
,
Chiashi
,
S.
,
Miyauchi
,
Y.
,
Hu
,
M.
,
Ogura
,
M.
,
Okubo
,
T.
, and
Maruyama
,
S.
,
2004
, “
Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy
,”
Chem. Phys. Lett.
,
385
(
3–4
), pp.
298
303
.10.1016/j.cplett.2003.12.095
26.
Kim
,
D.-H.
,
Jang
,
H.-S.
,
Kim
,
C.-D.
,
Cho
,
D.-S.
,
Yang
,
H.-S.
,
Kang
,
H.-D.
,
Min
,
B.-K.
, and
Lee
,
H.-R.
,
2003
, “
Dynamic Growth Rate Behavior of a Carbon Nanotube Forest Characterized by In Situ Optical Growth Monitoring
,”
Nano Lett.
,
3
(
6
), pp.
863
865
.10.1021/nl034212g
27.
Baker
,
R. T. K.
,
1989
, “
Catalytic Growth of Carbon Filaments
,”
Carbon
,
27
(
3
), pp.
315
323
.10.1016/0008-6223(89)90062-6
28.
Saito
,
R.
,
Grüneis
,
A.
,
Samsonidze
,
G. G.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M. S.
,
Jorio
,
A.
,
Cançado
,
L. G.
,
Pimenta
,
M. A.
, and
Souza Filho
,
A. G.
,
2004
, “
Optical Absorption of Graphite and Single-Wall Carbon Nanotubes
,”
Appl. Phys. A
,
78
(
8
), pp.
1099
1105
.10.1007/s00339-003-2459-z
29.
Jäger
,
C.
,
Henning
,
T.
,
Schlögl
,
R.
, and
Spillecke
,
O.
,
1999
, “
Spectral Properties of Carbon Black
,”
J. Non-Cryst. Solids
,
258
(
1–3
), pp.
161
179
.10.1016/S0022-3093(99)00436-6
30.
Kuzmenko
,
A. B.
,
van Heumen
,
E.
,
Carbone
,
F.
, and
van der Marel
,
D.
,
2008
, “
Universal Optical Conductance of Graphite
,”
Phys. Rev. Lett.
,
100
(
11
), p.
117401
.10.1103/PhysRevLett.100.117401
31.
Sato
,
Y.
,
1968
, “
Optical Study of Electronic Structure of Graphite
,”
J. Phys. Soc. Jpn.
,
24
(
3
), pp.
489
492
.10.1143/JPSJ.24.489
32.
Philipp
,
H. R.
,
1977
, “
Infrared Optical Properties of Graphite
,”
Phys. Rev. B
,
16
(
6
), pp.
2896
2900
.10.1103/PhysRevB.16.2896
33.
Itkis
,
M. E.
,
Niyogi
,
S.
,
Meng
,
M. E.
,
Hamon
,
M. A.
,
Hu
,
H.
, and
Haddon
,
R. C.
,
2002
, “
Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
2
(
2
), pp.
155
159
.10.1021/nl0156639
34.
Venghaus
,
H.
,
1977
, “
Infrared Reflectance and Dielectric Properties of Pyrolytic Graphite for E || c Polarization
,”
Phys. Status Solidi B
,
81
(
1
), pp.
221
225
.10.1002/pssb.2220810123
35.
Nemanich
,
R. J.
,
Lucovsky
,
G.
, and
Solin
,
S. A.
,
1977
, “
Infrared Active Optical Vibrations of Graphite
,”
Solid State Commun.
,
23
(
2
), pp.
117
120
.10.1016/0038-1098(77)90663-9
36.
Borghesi
,
A.
, and
Guizzetti
,
G.
,
1991
, “
Graphite (C)
,”
Handbook of Optical Constants of Solids II
,
E. D.
Palik
, ed.,
Academic Press
,
San Diego, CA
, pp.
449
460
.
37.
Draine
,
B. T.
, and
Lee
,
H. M.
,
1984
, “
Optical-Properties of Interstellar Graphite and Silicate Grains
,”
Astrophys. J.
,
285
(
1
), pp.
89
108
.10.1086/162480
38.
Smith
,
D. Y.
,
1985
, “
Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data
,”
Handbook of Optical Constants of Solids
,
E. D.
Palik
, ed.,
Academic Press
,
San Diego, CA
, pp.
35
68
.10.1016/B978-0-08-054721-3.50008-3
39.
Taft
,
E. A.
, and
Philipp
,
H. R.
,
1965
, “
Optical Properties of Graphite
,”
Phys. Rev.
,
138
(
1
A), pp.
A197
A202
.10.1103/PhysRev.138.A197
40.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
41.
García-Vidal
,
F. J.
,
Pitarke
,
J. M.
, and
Pendry
,
J. B.
,
1997
, “
Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes
,”
Phys. Rev. Lett.
,
78
(
22
), pp.
4289
4292
.10.1103/PhysRevLett.78.4289
42.
,
W.
,
Dong
,
J.
, and
Li
,
Z.-Y.
,
2000
, “
Optical Properties of Aligned Carbon Nanotube Systems Studied by the Effective-Medium Approximation Method
,”
Phys. Rev. B
,
63
(
3
), p.
033401
.10.1103/PhysRevB.63.033401
43.
Wu
,
X. H.
,
Pan
,
L. S.
,
Fan
,
X. J.
,
Xu
,
D.
,
Hua
,
L.
, and
Zhang
,
C. X.
,
2003
, “
A Semi-Analytic Method for Studying Optical Properties of Aligned Carbon Nanotubes
,”
Nanotechnology
,
14
(
11
), pp.
1180
1186
.10.1088/0957-4484/14/11/004
44.
de los Arcos
,
T.
,
Garnier
,
M. G.
,
Oelhafen
,
P.
,
Seo
,
J. W.
,
Domingo
,
C.
,
García-Ramos
,
J. V.
, and
Sánchez-Cortés
,
S.
,
2005
, “
In Situ Assessment of Carbon Nanotube Diameter Distribution With Photoelectron Spectroscopy
,”
Phys. Rev. B
,
71
(
20
), p.
205416
.10.1103/PhysRevB.71.205416
45.
Bao
,
H.
,
Ruan
,
X.
, and
Fisher
,
T. S.
,
2010
, “
Optical Properties of Ordered Vertical Arrays of Multi-Walled Carbon Nanotubes From FDTD Simulations
,”
Opt. Express
,
18
(
6
), pp.
6347
6359
.10.1364/OE.18.006347
46.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2013
, “
Near-Field Thermal Radiation Between Hyperbolic Metamaterials: Graphite and Carbon Nanotubes
,”
Appl. Phys. Lett.
,
103
(
21
), p.
213102
.10.1063/1.4832057
47.
Knoesen
,
A.
,
Moharam
,
M.
, and
Gaylord
,
T.
,
1985
, “
Electromagnetic Propagation at Interfaces and in Waveguides in Uniaxial Crystals
,”
Appl. Phys. B
,
38
(3), pp.
171
178
.10.1007/BF00697480
48.
Wang
,
H.
,
Liu
,
X.
,
Wang
,
L.
, and
Zhang
,
Z.
,
2013
, “
Anisotropic Optical Properties of Silicon Nanowire Arrays Based on the Effective Medium Approximation
,”
Int. J. Therm. Sci.
,
65
, pp.
62
69
.10.1016/j.ijthermalsci.2012.08.018
49.
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays
,”
ASME J. Heat Transfer
,
135
(6), p.
061602
.10.1115/1.4023578
50.
Born
,
M.
, and
Wolf
,
E.
,
1999
,
Principles or Optics
,
7th ed., Cambridge University Press
,
Cambridge, UK
. 10.1017/CBO9781139644181
51.
Edwards
,
D. F.
,
1985
, “
Silicon (Si)
,”
Handbook of Optical Constants of Solids
, E. D. Palik, ed.,
Academic Press
,
San Diego
, pp.
547
569
.10.1016/B978-0-08-054721-3.50029-0
You do not currently have access to this content.