In order to scrutinize the coolant mass distribution and its effect to the heat transfer in oblique fin microchannel array, extensive numerical studies are performed on planar oblique fin configuration. Full-domain simulations using common-flow down (CFD) approach are employed to provide better insights into the flow distribution, flow stability, and heat transfer performance at a global level. The flow field and temperature profile analysis shows that nonuniform coolant distribution and coolant migration occur in the oblique fin microchannel, and the heat transfer performance for both edges of the heat sink is affected due to changing secondary flow rate. However, the flow migration does not affect the local coolant velocity and temperature profiles significantly in the middle region (0.2 < Z′ < 0.8). Meanwhile, it is also found that Reynolds number affects the coolant migration, the stability of the fluid flow, and heat transfer performance significantly. Higher Reynolds number increases the percentage of secondary flow rate and, hence, enhances the heat transfer for fin surfaces in secondary channels.

References

1.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
Second International Conference on Microchannels and Minichannels
, Rochester, NY, June 17–19. Paper No. ICMM2004-2328.
2.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
1999
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer
,
122
(1), pp.
134
142
.
3.
Kidd
,
G. J.
,
1969
, “
Heat Transfer and Pressure Drop for Nitrogen Flowing in Tubes Containing Twisted Tapes
,”
AIChE J.
,
15
(
4
), pp.
581
585
.
4.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes—Part II: Transition and Turbulent Flows
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
890
896
.
5.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.
6.
Li
,
H.
,
Chen
,
C.
, and
Chao
,
S.
,
2013
, “
Enhancing Heat Transfer in a Plate-Fin Heat Sink Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
67
(12), pp.
666
677
.
7.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids: Approaches and Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5951
5993
.
8.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
9.
Tatsumi
,
K.
,
Yamaguchi
,
M.
, and
Nishio
,
Y.
,
2006
, “
Heat Transfer and Pressure Loss Characteristics of Obliquely-Arranged Cut-Fins
,”
International Heat Transfer Conference 13
, Sydney, Australia, Aug. 13–18.
10.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2009
, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,” ASME InterPACK Conference, San Francisco, CA, July 19–23,
ASME
Paper No. IPACK-2009-89059.
11.
Fan
,
Y.
,
Lee
,
P. S.
, and
Jin
,
L.
,
2013
, “
A Simulation and Experimental Study of Fluid Flow and Heat Transfer on Cylindrical Oblique-Finned Heat Sink
,”
Int. J. Heat Mass Transfer
,
61
(6), pp.
62
72
.
12.
Springer
,
M. E.
, and
Thole
,
K. A.
,
1998
, “
Experimental Design for Flowfield Studies of Louvered Fins
,”
Exp. Therm. Fluid Sci.
,
18
(
3
), pp.
258
269
.
13.
DeJong
,
N. C.
, and
Jacobi
,
A. M.
,
2003
, “
Flow, Heat Transfer, and Pressure Drop in the Near-Wall Region of Louvered-Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
27
(
3
), pp.
237
250
.
14.
Springer
,
M. E.
, and
Thole
,
K. A.
,
1999
, “
Entry Region of Louvered Fin Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
19
(
4
), pp.
223
232
.
15.
Perrotin
,
T.
, and
Clodic
,
D.
,
2004
, “
Thermal-Hydraulic CFD Study in Louvered Fin-and-Flat-Tube Heat Exchangers
,”
Int. J. Refrig.
,
27
(
4
), pp.
422
432
.
16.
Webb
,
R. L.
, and
Trauger
,
P.
,
1991
, “
How Structure in the Louvered Fin Heat Exchanger Geometry
,”
Exp. Therm. Fluid Sci.
,
4
(
2
), pp.
205
217
.
17.
Fan
,
Y.
,
Lee
,
P. S.
, and
Jin
,
L.
,
2014
, “
A Parametric Investigation of Heat Transfer and Friction Characteristics in Cylindrical Oblique Fin Minichannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
68
(1), pp.
567
584
.
18.
Why Are the Batteries in Boeing's 787 Burning?
2013
, Bloomberg, http://www.businessweek.com/articles/2013-01-18/why-are-the-batteries-in-boeings-787-burning
19.
Fan
,
Y.
,
Lee
,
P. S.
, and
Chua
,
B. W.
,
2014
, “
Investigation on the Influence of Edge Effect on Flow and Temperature Uniformities in Cylindrical Oblique-Finned Minichannel Array
,”
Int. J. Heat Mass Transfer
,
70
(3), pp.
651
663
.
20.
Zhang
,
X.
, and
Tafti
,
D. K.
,
2001
, “
Classification and Effects of Thermal Wakes on Heat Transfer in Multilouvered Fins
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2461
2473
.
21.
Tafti
,
D. K.
, and
Zhang
,
X.
,
2001
, “
Geometry Effects on Flow Transition in Multilouvered Fins–Onset, Propagation, and Characteristic Frequencies
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4195
4210
.
22.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2013
, “
Numerical Study of Fluid Flow and Heat Transfer in the Enhanced Microchannel With Oblique Fins
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041901
.
23.
Lee
,
Y. J.
,
Singh
,
P. K.
, and
Lee
,
P. S.
,
2015
, “
Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins With Parametric Study
,”
Int. J. Heat Mass Transfer
,
81
(2), pp.
325
336
.
24.
DeJong
,
N. C.
, and
Jacobi
,
A. M.
,
2003
, “
Localized Flow and Heat Transfer Interactions in Louvered-Fin Arrays
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
443
455
.
25.
Lee
,
Y.
,
Lee
,
P.
, and
Chou
,
S.
,
2010
, “
Hot Spot Mitigating With Oblique Finned Microchannel Heat Sink
,” ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, British Columbia, Canada, Nov. 12–18,
ASME
Paper No. IMECE2010-37817.
You do not currently have access to this content.