The possibility of using a frost layer, created on the surface of a sample that undergoes cryogenic treatment, as a heat transfer enhancer was recently studied. This layer grows on the preliminary cooled sample surface as a result of its contact with moist air flow prior to its immersion into liquid nitrogen. A significant increase in the outflow heat flux (up to 12.8 times), or, alternatively, a cooling time shortening, in comparison with the bare sample was found. A detailed description of the frost layer development along with the influence of the thickness of the layer on the efficiency of the cooling process, as well as environmental parameters that affect the thickness itself is presented in the paper.
Issue Section:
Two-Phase Flow and Heat Transfer
References
1.
Mazor
, G.
, Korin
, E.
, Nemirovsky
, D.
, and Ladizhensky
, I.
, 2013
, “Frost Formation as a Temporary Enhancer for Quench Pool Boiling
,” Appl. Therm. Eng.
, 52
(2
), pp. 345
–352
.2.
Bergles
, A. E.
, and Thompson
, W. G.
, 1970
, “Relationship of Quench Data to Steady-State Pool Boiling Data
,” Int. J. Heat Mass Transfer
, 13
(1
), pp. 55
–68
.3.
Westwater
, J. W.
, Hwalek
, J. J.
, and Irving
, M. E.
, 1986
, “Suggested Standard Method for Obtaining Boiling Curves by Quenching
,” Ind. Eng. Chem. Fundam.
, 25
(4
), pp. 685
–692
.4.
Kim
, H.
, DeWitt
, G.
, McKrell
, T.
, Buongiorno
, J.
, and Hu
, L. W.
, 2009
, “On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,” Int. J. Multiphase Flow
, 35
(5
), pp. 427
–438
.5.
Lotfi
, H.
, and Shafii
, M. B.
, 2009
, “Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,” Int. J. Therm. Sci.
, 48
(12
), pp. 2215
–2220
.6.
Sridhara
, V.
, and Satapathy
, L. N.
, 2011
, “Al2o3-Based Nanofluids: A Review
,” Nanoscale Res. Lett.
, 6
(1
), p. 456
.7.
Kole
, M.
, and Dey
, T. K.
, 2013
, “Investigation of Thermal Conductivity, Viscosity, and Electrical Conductivity of Graphene Based Nanofluids
,” J. Appl. Phys.
, 113
(8
), p. 084307.8.
Ahmed
, H. E.
, Mohammed
, H. A.
, and Yusoff
, M. Z.
, 2012
, “An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids: Approaches and Applications
,” Renewable Sustainable Energy Rev.
, 16
(8
), pp. 5951
–5993
.9.
Khoshmehr
, H. H.
, Saboonchi
, A.
, Shafii
, M. B.
, and Jahani
, N.
, 2014
, “The Study of Magnetic Field Implementation on Cylinder Quenched in Boiling Ferro-Fluid
,” Appl. Therm. Eng.
, 64
(1–2
), pp. 331
–338
.10.
Ahn
, H. S.
, Lee
, C.
, Kim
, H.
, Jo
, H.
, Kang
, S.
, Kim
, J.
, Shin
, J.
, and Kim
, M. H.
, 2010
, “Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,” Nucl. Eng. Des.
, 240
(10
), pp. 3350
–3360
.11.
Moita
, A. S.
, Teodori
, E.
, and Moreira
, A. L. N.
, 2015
, “Influence of Surface Topography in the Boiling Mechanisms
,” Int. J. Heat Fluid Flow
, 52
(0
), pp. 50
–63
.12.
Chu
, K.-H.
, Enright
, R.
, and Wang
, E. N.
, 2012
, “Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,” Appl. Phys. Lett.
, 100
(24
), p. 241603.13.
Dhillon
, N. S.
, Buongiorno
, J.
, and Varanasi
, K. K.
, 2015
, “Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces
,” Nat. Commun.
, 6
, p. 8427.14.
Ladizhensky
, I.
, Korin
, E.
, Mazor
, G.
, Nemirovsky
, D.
, and Goldkin
, E.
, 2014
, “Quench Pool Boiling With Temporary Crystalline Enhancers
,” Chem. Eng. Technol.
, 37
(2
), pp. 349
–356
.15.
Hu
, H.
, Xu
, C.
, Zhao
, Y.
, Shaeffer
, R.
, Ziegler
, K. J.
, and Chung
, J. N.
, 2015
, “Modification and Enhancement of Cryogenic Quenching Heat Transfer by a Nanoporous Surface
,” Int. J. Heat Mass Transfer
, 80
, pp. 636
–643
.16.
Webb
, R. L.
, 1994
, Principles of Enhanced Heat Transfer
, Wiley
, New York
.17.
Hayashi
, Y.
, Aoki
, A.
, Adachi
, S.
, and Hori
, K.
, 1977
, “Study of Frost Properties Correlating With Frost Formation Types
,” ASME J. Heat Transfer
, 99
(2
), pp. 239
–245
.18.
Kandula
, M.
, 2011
, “Frost Growth and Densification in Laminar Flow Over Flat Surfaces
,” Int. J. Heat Mass Transfer
, 54
(15–16
), pp. 3719
–3731
.19.
El Cheikh
, A.
, and Jacobi
, A.
, 2014
, “A Mathematical Model for Frost Growth and Densification on Flat Surfaces
,” Int. J. Heat Mass Transfer
, 77
(0
), pp. 604
–611
.20.
Schneider
, H. W.
, 1978
, “Equation of the Growth Rate of Frost Forming on Cooled Surfaces
,” Int. J. Heat Mass Transfer
, 21
(8
), pp. 1019
–1024
.21.
Ostin
, R.
, and Andersson
, S.
, 1991
, “Frost Growth-Parameters in a Forced Air Stream
,” Int. J. Heat Mass Transfer
, 34
(4–5
), pp. 1009
–1017
.22.
Le Gall
, R.
, Grillot
, J. M.
, and Jallut
, C.
, 1997
, “Modelling of Frost Growth and Densification
,” Int. J. Heat Mass Transfer
, 40
(13
), pp. 3177
–3187
.23.
Kim
, D.
, Kim
, C.
, and Lee
, K.-S.
, 2015
, “Frosting Model for Predicting Macroscopic and Local Frost Behaviors on a Cold Plate
,” Int. J. Heat Mass Transfer
, 82
(0
), pp. 135
–142
.24.
Burggraf
, O. R.
, 1964
, “An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications
,” ASME J. Heat Transfer
, 86
(3
), pp. 373
–380
.25.
Ded
, J. S.
, and Lienhard
, J. H.
, 1972
, “Peak Pool Boiling Heat-Flux From a Sphere
,” AIChE J.
, 18
(2
), pp. 337
–342
.26.
Lavalle
, G. G.
, Carrica
, P.
, Garea
, V.
, and Jaime
, M.
, 1992
, “A Boiling Heat Transfer Paradox
,” Am. J. Phys.
, 60
(7
), pp. 593
–597
.27.
Maddox
, J. P.
, and Frederking
, T. H. K.
, 1966
, Cooldown of Insulated Metal Tubes to Cryogenic Temperatures
, Springer US
, Boston, MA
.28.
Berlin
, I. I.
, Kalinin
, É. K.
, Kostyuk
, V. V.
, Kochelaev
, Y. S.
, Podzei
, I. V.
, and Yarkho
, S. A.
, 1973
, “A Study of Critical Film Boiling Under Natural Convection
,” J. Eng. Phys.
, 24
(2
), pp. 139
–143
.29.
Lai
, F.-S.
, and Hsu
, Y.-Y.
, 1967
, “Temperature Distribution in a Fin Partially Cooled by Nucleate Boiling
,” AIChE J.
, 13
(4
), pp. 817
–821
.30.
Liaw
, S.-P.
, Yeh
, R.-H.
, and Yeh
, W.-T.
, 2005
, “A Simple Design of Fins for Boiling Heat Transfer
,” Int. J. Heat Mass Transfer
, 48
(12
), pp. 2493
–2502
.Copyright © 2017 by ASME
You do not currently have access to this content.