The possibility of using a frost layer, created on the surface of a sample that undergoes cryogenic treatment, as a heat transfer enhancer was recently studied. This layer grows on the preliminary cooled sample surface as a result of its contact with moist air flow prior to its immersion into liquid nitrogen. A significant increase in the outflow heat flux (up to 12.8 times), or, alternatively, a cooling time shortening, in comparison with the bare sample was found. A detailed description of the frost layer development along with the influence of the thickness of the layer on the efficiency of the cooling process, as well as environmental parameters that affect the thickness itself is presented in the paper.

References

1.
Mazor
,
G.
,
Korin
,
E.
,
Nemirovsky
,
D.
, and
Ladizhensky
,
I.
,
2013
, “
Frost Formation as a Temporary Enhancer for Quench Pool Boiling
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
345
352
.
2.
Bergles
,
A. E.
, and
Thompson
,
W. G.
,
1970
, “
Relationship of Quench Data to Steady-State Pool Boiling Data
,”
Int. J. Heat Mass Transfer
,
13
(
1
), pp.
55
68
.
3.
Westwater
,
J. W.
,
Hwalek
,
J. J.
, and
Irving
,
M. E.
,
1986
, “
Suggested Standard Method for Obtaining Boiling Curves by Quenching
,”
Ind. Eng. Chem. Fundam.
,
25
(
4
), pp.
685
692
.
4.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
427
438
.
5.
Lotfi
,
H.
, and
Shafii
,
M. B.
,
2009
, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2215
2220
.
6.
Sridhara
,
V.
, and
Satapathy
,
L. N.
,
2011
, “
Al2o3-Based Nanofluids: A Review
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
456
.
7.
Kole
,
M.
, and
Dey
,
T. K.
,
2013
, “
Investigation of Thermal Conductivity, Viscosity, and Electrical Conductivity of Graphene Based Nanofluids
,”
J. Appl. Phys.
,
113
(
8
), p. 084307.
8.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids: Approaches and Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5951
5993
.
9.
Khoshmehr
,
H. H.
,
Saboonchi
,
A.
,
Shafii
,
M. B.
, and
Jahani
,
N.
,
2014
, “
The Study of Magnetic Field Implementation on Cylinder Quenched in Boiling Ferro-Fluid
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
331
338
.
10.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.
11.
Moita
,
A. S.
,
Teodori
,
E.
, and
Moreira
,
A. L. N.
,
2015
, “
Influence of Surface Topography in the Boiling Mechanisms
,”
Int. J. Heat Fluid Flow
,
52
(
0
), pp.
50
63
.
12.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p. 241603.
13.
Dhillon
,
N. S.
,
Buongiorno
,
J.
, and
Varanasi
,
K. K.
,
2015
, “
Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces
,”
Nat. Commun.
,
6
, p. 8427.
14.
Ladizhensky
,
I.
,
Korin
,
E.
,
Mazor
,
G.
,
Nemirovsky
,
D.
, and
Goldkin
,
E.
,
2014
, “
Quench Pool Boiling With Temporary Crystalline Enhancers
,”
Chem. Eng. Technol.
,
37
(
2
), pp.
349
356
.
15.
Hu
,
H.
,
Xu
,
C.
,
Zhao
,
Y.
,
Shaeffer
,
R.
,
Ziegler
,
K. J.
, and
Chung
,
J. N.
,
2015
, “
Modification and Enhancement of Cryogenic Quenching Heat Transfer by a Nanoporous Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
636
643
.
16.
Webb
,
R. L.
,
1994
,
Principles of Enhanced Heat Transfer
,
Wiley
,
New York
.
17.
Hayashi
,
Y.
,
Aoki
,
A.
,
Adachi
,
S.
, and
Hori
,
K.
,
1977
, “
Study of Frost Properties Correlating With Frost Formation Types
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
239
245
.
18.
Kandula
,
M.
,
2011
, “
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3719
3731
.
19.
El Cheikh
,
A.
, and
Jacobi
,
A.
,
2014
, “
A Mathematical Model for Frost Growth and Densification on Flat Surfaces
,”
Int. J. Heat Mass Transfer
,
77
(
0
), pp.
604
611
.
20.
Schneider
,
H. W.
,
1978
, “
Equation of the Growth Rate of Frost Forming on Cooled Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1019
1024
.
21.
Ostin
,
R.
, and
Andersson
,
S.
,
1991
, “
Frost Growth-Parameters in a Forced Air Stream
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1009
1017
.
22.
Le Gall
,
R.
,
Grillot
,
J. M.
, and
Jallut
,
C.
,
1997
, “
Modelling of Frost Growth and Densification
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3177
3187
.
23.
Kim
,
D.
,
Kim
,
C.
, and
Lee
,
K.-S.
,
2015
, “
Frosting Model for Predicting Macroscopic and Local Frost Behaviors on a Cold Plate
,”
Int. J. Heat Mass Transfer
,
82
(
0
), pp.
135
142
.
24.
Burggraf
,
O. R.
,
1964
, “
An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
373
380
.
25.
Ded
,
J. S.
, and
Lienhard
,
J. H.
,
1972
, “
Peak Pool Boiling Heat-Flux From a Sphere
,”
AIChE J.
,
18
(
2
), pp.
337
342
.
26.
Lavalle
,
G. G.
,
Carrica
,
P.
,
Garea
,
V.
, and
Jaime
,
M.
,
1992
, “
A Boiling Heat Transfer Paradox
,”
Am. J. Phys.
,
60
(
7
), pp.
593
597
.
27.
Maddox
,
J. P.
, and
Frederking
,
T. H. K.
,
1966
,
Cooldown of Insulated Metal Tubes to Cryogenic Temperatures
,
Springer US
,
Boston, MA
.
28.
Berlin
,
I. I.
,
Kalinin
,
É. K.
,
Kostyuk
,
V. V.
,
Kochelaev
,
Y. S.
,
Podzei
,
I. V.
, and
Yarkho
,
S. A.
,
1973
, “
A Study of Critical Film Boiling Under Natural Convection
,”
J. Eng. Phys.
,
24
(
2
), pp.
139
143
.
29.
Lai
,
F.-S.
, and
Hsu
,
Y.-Y.
,
1967
, “
Temperature Distribution in a Fin Partially Cooled by Nucleate Boiling
,”
AIChE J.
,
13
(
4
), pp.
817
821
.
30.
Liaw
,
S.-P.
,
Yeh
,
R.-H.
, and
Yeh
,
W.-T.
,
2005
, “
A Simple Design of Fins for Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2493
2502
.
You do not currently have access to this content.