Silicene, the silicon-based two-dimensional structure with honeycomb lattice, has been discovered and expected to have tremendous application potential in fundamental industries. However, its thermal transport mechanism and thermal properties of silicene have not been fully explained. We report a possible way to control the thermal transport and thermal rectification in silicene nanosheets by distributing triangular cavities, which are arranged in a staggered way. The nonequilibrium molecular dynamics (NEMD) simulation method is used. The influences of the size, number, and distribution of cavities are investigated. The simulation results show that reflections of phonon at the vertex and the base of the triangular cavities are quite different. The heat flux is higher when heat flow is from the vertex to the base of cavities, resulting in thermal rectification effect. The thermal rectification effect is strengthened with increasing cavity size and number. A maximum of thermal rectification with varying distance between columns of cavities is observed.

References

1.
Trushin
,
M.
, and
Schliemann
,
J.
,
2007
, “
Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach
,”
Phys. Rev. Lett.
,
99
(
21
), p.
216602
.
2.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151911
.
3.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W. Z.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
4.
Nika
,
D. L.
,
Ghosh
,
S.
,
Pokatilov
,
E. P.
, and
Balandin
,
A. A.
,
2009
, “
Lattice Thermal Conductivity of Graphene Flakes: Comparison With Bulk Graphite
,”
Appl. Phys. Lett.
,
94
(
20
), p.
203103
.
5.
Guo
,
Z. X.
,
Zhang
,
D.
, and
Gong
,
X. G.
,
2009
, “
Thermal Conductivity of Graphene Nanoribbons
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163103
.
6.
Savin
,
A. V.
,
Kivshar
,
Y. S.
, and
Hu
,
B.
,
2010
, “
Suppression of Thermal Conductivity in Graphene Nanoribbons With Rough Edges
,”
Phys. Rev. B
,
82
(
19
), p.
195422
.
7.
Evans
,
W. J.
,
Hu
,
L.
, and
Keblinski
,
P.
,
2010
, “
Thermal Conductivity of Graphene Ribbons From Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203112
.
8.
Pei
,
Q. X.
,
Sha
,
Z. D.
, and
Zhang
,
Y. W.
,
2011
, “
A Theoretical Analysis of the Thermal Conductivity of Hydrogenated Graphene
,”
Carbon
,
49
(
14
), pp.
4752
4759
.
9.
Pettes
,
M. T.
,
Jo
,
I. S.
,
Yao
,
Z.
, and
Shi
,
L.
,
2011
, “
Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene
,”
Nano Lett.
,
11
(
3
), pp.
1195
1200
.
10.
Nika
,
D. L.
,
Askerov
,
A. S.
, and
Balandin
,
A. A.
,
2012
, “
Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons
,”
Nano Lett.
,
12
(
6
), pp.
3238
3244
.
11.
Chen
,
S. S.
,
Wu
,
Q. Z.
,
Mishra
,
C.
,
Kang
,
J. Y.
,
Zhang
,
H. J.
,
Cho
,
K. J.
,
Cai
,
W. W.
,
Balandin
,
A. A.
, and
Ruoff
,
R. S.
,
2012
, “
Thermal Conductivity of Isotopically Modified Graphene
,”
Nat. Mater.
,
11
(
3
), pp.
203
207
.
12.
Takeda
,
K.
, and
Shiraishi
,
K.
,
1994
, “
Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite
,”
Phys. Rev. B
,
50
(
20
), pp.
14916
14922
.
13.
Resta
,
A.
,
Leoni
,
T.
,
Barth
,
C.
,
Ranguis
,
A.
,
Becker
,
C.
,
Bruhn
,
T.
,
Vogt
,
P.
, and
Le Lay
,
G.
,
2013
, “
Atomic Structures of Silicene Layers Grown on Ag (111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations
,”
Sci. Rep.
,
3
, p.
2399
.
14.
Leandri
,
C.
,
Saifi
,
H.
,
Guillermet
,
O.
, and
Aufray
,
B.
,
2001
, “
Silicon Thin Films Deposited on Ag (001): Growth and Temperature Behavior
,”
Appl. Surf. Sci.
,
177
(
4
), pp.
303
306
.
15.
Meng
,
L.
,
Wang
,
Y. L.
,
Zhang
,
L. Z.
,
Du
,
S. X.
,
Wu
,
R. T.
,
Li
,
L. F.
,
Zhang
,
Y.
,
Li
,
G.
,
Zhou
,
H. T.
,
Hofer
,
W. A.
, and
Gao
,
H. J.
,
2013
, “
Buckled Silicene Formation on Ir (111)
,”
Nano Lett.
,
13
(
2
), pp.
685
690
.
16.
Cahangirov
,
S.
,
Topsakal
,
M.
,
Akturk
,
E.
,
Sahin
,
H.
, and
Ciraci
,
S.
,
2009
, “
Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
,”
Phys. Rev. Lett.
,
102
(
23
), p.
236804
.
17.
Ni
,
Z. Y.
,
Liu
,
Q. H.
,
Tang
,
K. C.
,
Zheng
,
J. X.
,
Zhou
,
J.
,
Qin
,
R.
,
Gao
,
Z. X.
,
Yu
,
D. P.
, and
Lu
,
J.
,
2012
, “
Tunable Bandgap in Silicene and Germanene
,”
Nano Lett.
,
12
(
1
), pp.
113
118
.
18.
Drummond
,
N. D.
,
Zolyomi
,
V.
, and
Fal'Ko
,
V. I.
,
2012
, “
Electrically Tunable Band Gap in Silicene
,”
Phys. Rev. B
,
85
(
7
), p.
75423
.
19.
Scalise
,
E.
,
Houssa
,
M.
,
Pourtois
,
G.
,
Van Den Broek
,
B.
,
Afanas Ev
,
V.
, and
Stesmans
,
A.
,
2013
, “
Vibrational Properties of Silicene and Germanene
,”
Nano Res.
,
6
(
1
), pp.
19
28
.
20.
Zberecki
,
K.
,
Wierzbicki
,
M.
,
Barnas
,
J.
, and
Swirkowicz
,
R.
,
2013
, “
Thermoelectric Effects in Silicene Nanoribbons
,”
Phys. Rev. B
,
88
(
11
), p.
115404
.
21.
Lebegue
,
S.
, and
Eriksson
,
O.
,
2009
, “
Electronic Structure of Two-Dimensional Crystals From Ab Initio Theory
,”
Phys. Rev. B
,
79
(
11
), p.
115409
.
22.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X. S.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2010
, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.
23.
Wang
,
L.
, and
Sun
,
H.
,
2012
, “
Thermal Conductivity of Silicon and Carbon Hybrid Monolayers: A Molecular Dynamics Study
,”
J. Mol. Model.
,
18
(
11
), pp.
4811
4818
.
24.
Ng
,
T. Y.
,
Yeo
,
J. J.
, and
Liu
,
Z. S.
,
2013
, “
Molecular Dynamics Simulation of the Thermal Conductivity of Shorts Strips of Graphene and Silicene: A Comparative Study
,”
Int. J. Mech. Mater. Des.
,
9
(
2SI
), pp.
105
114
.
25.
Gu
,
X. K.
, and
Yang
,
R. G.
,
2015
, “
First-Principles Prediction of Phononic Thermal Conductivity of Silicene: A Comparison With Graphene
,”
J. Appl. Phys.
,
117
(
2
), p.
25102
.
26.
Yang
,
K.
,
Cahangirov
,
S.
,
Cantarero
,
A.
,
Rubio
,
A.
, and
D'Agosta
,
R.
,
2014
, “
Thermoelectric Properties of Atomically Thin Silicene and Germanene Nanostructures
,”
Phys. Rev. B
,
89
(
12
), p.
125403
.
27.
Zhang
,
X. L.
,
Xie
,
H.
,
Hu
,
M.
,
Bao
,
H.
,
Yue
,
S. Y.
,
Qin
,
G. Z.
, and
Su
,
G.
,
2014
, “
Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential
,”
Phys. Rev. B
,
89
(
5
), p.
54310
.
28.
Xie
,
H.
,
Hu
,
M.
, and
Bao
,
H.
,
2014
, “
Thermal Conductivity of Silicene From First-Principles
,”
Appl. Phys. Lett.
,
104
(
13
), p.
131906
.
29.
Berdiyorov
,
G. R.
, and
Peeters
,
F. M.
,
2014
, “
Influence of Vacancy Defects on the Thermal Stability of Silicene: A Reactive Molecular Dynamics Study
,”
RSC Adv.
,
4
(
3
), pp.
1133
1137
.
30.
Pei
,
Q.-X.
,
Zhang
,
Y.-W.
,
Sha
,
Z.-D.
, and
Shenoy
,
V. B.
,
2013
, “
Tuning the Thermal Conductivity of Silicene With Tensile Strain and Isotopic Doping: A Molecular Dynamics Study
,”
J. Appl. Phys.
,
114
(
3
), p.
33526
.
31.
Liu
,
B.
,
Reddy
,
C. D.
,
Jiang
,
J.
,
Zhu
,
H.
,
Baimova
,
J. A.
,
Dmitriev
,
S. V.
, and
Zhou
,
K.
,
2014
, “
Thermal Conductivity of Silicene Nanosheets and the Effect of Isotopic Doping
,”
J. Phys. D: Appl. Phys.
,
47
(
16
), p.
165301
.
32.
Hu
,
M.
,
Zhang
,
X. L.
, and
Poulikakos
,
D.
,
2013
, “
Anomalous Thermal Response of Silicene to Uniaxial Stretching
,”
Phys. Rev. B.
,
87
(
19
), p.
195417
.
33.
Wang
,
Z. Y.
,
Feng
,
T. L.
, and
Ruan
,
X. L.
,
2015
, “
Thermal Conductivity and Spectral Phonon Properties of Freestanding and Supported Silicene
,”
J. Appl. Phys.
,
117
(
8
), p.
84317
.
34.
Zhang
,
X. L.
,
Bao
,
H.
, and
Hu
,
M.
,
2015
, “
Bilateral Substrate Effect on the Thermal Conductivity of Two-Dimensional Silicon
,”
Nanoscale
,
7
(
14
), pp.
6014
6022
.
35.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
36.
Hu
,
J.
,
Ruan
,
X.
, and
Chen
,
Y. P.
,
2009
, “
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
,”
Nano Lett.
,
9
(
7
), pp.
2730
2735
.
37.
Ju
,
S. H.
, and
Liang
,
X. G.
,
2012
, “
Thermal Rectification and Phonon Scattering in Silicon Nanofilm With Cone Cavity
,”
J. Appl. Phys.
,
112
(
5
), p.
54312
.
38.
Li
,
H. P.
, and
Zhang
,
R. Q.
,
2012
, “
Vacancy-Defect-Induced Diminution of Thermal Conductivity in Silicene
,”
EPL Europhys. Lett.
,
99
(
3
), p.
36001
.
39.
Ju
,
S. H.
, and
Liang
,
X. G.
,
2015
, “
Detecting the Phonon Interference Effect in Si/Ge Nanocomposite by Wave Packets
,”
Appl. Phys. Lett.
,
106
(
20
), p.
203107
.
40.
Wang
,
Y.
,
Vallabhaneni
,
A.
,
Hu
,
J. N.
,
Qiu
,
B.
,
Chen
,
Y. P.
, and
Ruan
,
X. L.
,
2014
, “
Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures
,”
Nano Lett.
,
14
(
2
), pp.
592
596
.
You do not currently have access to this content.