High porosity open-cell metal foams have captured the interest of thermal industry due to their high surface area density, low weight, and ability to create tortuous mixing of fluid. In this work, application of metal foams as heat sinks has been explored. The foam has been represented as a simple cubic structure and heat transfer from a heated base has been treated analogous to that of solid fins. Based on this model, three performance parameters namely, foam efficiency, overall foam efficiency, and foam effectiveness have been evaluated for metal foam heat sinks. Parametric studies with varying foam length, porosity, pore density, material, and fluid velocity have been conducted. It has been observed that geometric mean of foam efficiency and foam effectiveness can be a useful parameter to exactly determine the optimum foam length. Additionally, the variation in temperature profile of different foams heated from one end has been determined experimentally by cooling these with atmospheric air. The experimental results have been presented for open-cell metal foams (10 and 30 PPI) made of copper/aluminium/Fe–Ni–Cr alloy with porosity in the range of 0.908–0.964.

References

1.
Kern
,
D. Q.
, and
Kraus
,
A. D.
,
1972
,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
3.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New Delhi, India
.
4.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinmann
,
Oxford, UK
.
5.
Lu
,
T.
,
2002
, “
Ultralight Porous Metals: From Fundamentals to Applications
,”
Acta Mech. Sin.
,
18
(
5
), pp.
457
479
.
6.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
Trans. ASME
,
122
(
3
), pp.
572
578
.
7.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat. Transfer
,
122
(
3
), pp.
557
565
.
8.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
Trans. ASME
,
124
(
1
), pp.
120
129
.
9.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.
10.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminium-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.
11.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat Transfer Characteristics of Aluminium-Foam Heat Sinks
,”
Trans. ASME
,
128
(
6
), pp.
530
537
.
12.
Ghosh
,
I.
,
2009
, “
Heat Transfer Correlation for High-Porosity Open-Cell Foam
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1488
1494
.
13.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Heat Transfer During Air Flow in Aluminium Foams
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
4976
4984
.
14.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2012
, “
Experimental Air Heat Transfer and Pressure Drop Through Copper Foams
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
224
232
.
15.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 PPI Aluminium Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.
16.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.
17.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021014
.
18.
Salas
,
K. I.
, and
Waas
,
A. M.
,
2007
, “
Convective Heat Transfer in Open Cell Metal Foams
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1217
1229
.
19.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
20.
Dukhan
,
N.
,
Negron
,
J. M. G.
, and
Feliciano
,
R. P.
,
2004
, “
An Approach for Simulating Metal Foam Cooling of High Power Electronics
,”
26th IEEE Annual International Telecommunications Energy Conference
(
INTELEC
), Chicago, IL, Sept. 19–23, pp.
385
391
.
21.
Dukhan
,
N.
,
Ramos
,
P. D.
,
Ruiz
,
E.
,
Reyes
,
M.
, and
Scott
,
E. P.
,
2005
, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10 PPI Metal Foam
,”
Int. J. Heat Mass Transfer
,
48
(25–26), pp.
5112
5120
.
22.
Dukhan
,
N.
,
Feliciano
,
R.
, and
Hernandez
,
A. R.
,
2006
, “
Heat Transfer Analysis in Metal Foams With Low Conductivity Fluids
,”
Trans. ASME
,
128
(
8
), pp.
784
792
.
23.
Dukhan
,
N.
, and
Chen
,
K. C.
,
2007
, “
Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
624
631
.
24.
Jeng
,
T.
,
Tzeng
,
S.
, and
Hung
,
Y.
,
2006
, “
An Analytical Study of Local Thermal Equilibrium in Porous Heat Sinks Using Fin Theory
,”
Int. J. Heat Mass Transfer
,
49
(11–12), pp.
1907
1914
.
25.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer.
,
130
(
3
), p.
034501
.
26.
Kiwan
,
S.
, and
Al-Nimr
,
M. A.
,
2001
, “
Using Porous Fins for Heat Transfer Enhancement
,”
Trans. ASME
,
123
(
4
), pp.
790
795
.
27.
Hooman
,
K.
, and
Merrikh
,
A. A.
,
2006
, “
Analytical Solution of Forced Convection in a Duct of Rectangular Cross Section Saturated by a Porous Medium
,”
Trans. ASME
,
128
(
6
), pp.
596
600
.
28.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Filled With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
868
873
.
29.
Moffat
,
R. J.
,
Eaton
,
J. K.
, and
Onstad
,
A.
,
2009
, “
A Method for Determining the Heat Transfer Properties of Foam-Fins
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011603
.
30.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Iyer
,
M. K.
,
2005
, “
Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
272
280
.
31.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.
32.
Ghosh
,
I.
,
2009
, “
How Good is Open-Cell Metal Foam as Heat Transfer Surface?
,”
ASME J. Heat Transfer
,
131
(
10
), p.
101004
.
33.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Form Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.
34.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.
35.
Dixit
,
T.
, and
Ghosh
,
I.
,
2015
, “
Review of Micro- and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1298
1311
.
36.
Sawei
,
Q.
,
Xinna
,
Z.
,
Qingxian
,
H.
,
Renjun
,
D.
,
Yan
,
J.
, and
Yuebo
,
H.
,
2015
, “
Research Progress on Simulation Modeling of Metal Foams
,”
Rare Met. Mater. Eng.
,
44
(
11
), pp.
2670
2676
.
37.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. H.
,
Bianco
,
N.
,
Chiu
,
W.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.
38.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
39.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer
,
130
(
2
), p.
024503
.
40.
Sullivan
,
R. M.
,
Ghosn
,
L. J.
, and
Lerch
,
B. A.
,
2008
, “
A General Tetrakaidecahedron Model for Open-Celled Foams
,”
Int. J. Solids Struct.
,
45
(
6
), pp.
1754
1765
.
41.
Inayat
,
A.
,
Schwerdtfeger
,
J.
,
Freund
,
H.
,
Korner
,
C.
,
Singer
,
R. F.
, and
Schwieger
,
W.
,
2011
, “
Periodic Open-Cell Foams: Pressure Drop Measurements and Modeling of an Ideal Tetrakaidecahedra Packing
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2758
2763
.
42.
Bock
,
J.
, and
Jacobi
,
A. M.
,
2013
, “
Geometric Classification of Open-Cell Metal Foams Using X-Ray Micro-Computed Tomography
,”
Mater. Charact.
,
75
, pp.
35
43
.
43.
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Andreozzi
,
A.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2015
, “
Monte Carlo Determination of Radiative Properties of Metal Foams: Comparison Between Idealized and Real Cell Structures
,”
Int. J. Therm. Sci.
,
87
, pp.
94
102
.
44.
Ranut
,
P.
,
Nobile
,
E.
, and
Mancini
,
L.
,
2014
, “
High Resolution Microtomography-Based CFD Simulation of Flow and Heat Transfer in Aluminium Metal Foams
,”
Appl. Therm. Eng.
,
69
(1–2), pp.
230
240
.
45.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
46.
Dixit
,
T.
, and
Ghosh
,
I.
,
2016
, “
An Experimental Study on Open Cell Metal Foam as Extended Heat Transfer Surface
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
28
37
.
47.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng. Part C
,
219
(
2
), pp.
183
191
.
48.
Prasad
,
B. S. V.
,
1997
, “
Fin Efficiency and Mechanisms of Heat Exchange Through Fins in Multistream Plate Fin Heat Exchangers: Development and Application of a Rating Algorithm
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4279
4288
.
49.
Poulikakos
,
D.
, and
Bejan
,
A.
,
1982
, “
Fin Geometry for Minimum Entropy Generation in Forced Convection
,”
Trans. ASME
,
104
(
4
), pp.
616
623
.
50.
Fleming
,
P. J.
, and
Wallace
,
J. J.
,
1986
, “
How Not to Lie With Statistics: The Correct Way to Summarize Benchmark Results
,”
Commun. ACM
,
29
(
3
), pp.
218
221
.
51.
Kubat
,
M.
, and
Matwin
,
S.
,
1997
, “
Addressing the Curse of Imbalanced Training Sets: One-Sided Selection
,”
14th International Conference on Machine Learning
(
ICML '97
), Morgan Kaufmann, Nashville, TN, pp.
179
186
.
52.
Akbani
,
R.
,
Kwek
,
S.
, and
Japkowicz
,
N.
,
2004
, “
Applying Support Vector Machines to Imbalanced Datasets
,”
Machine Learning: ECML 2004
,
J.-F.
Boulicaut
, F. Esposito, F. Giannotti, D. Pedreschi, eds.,
Springer-Verlag
,
Berlin
, pp.
39
50
.
53.
Saleh
,
A. Y.
,
Shamsuddin
,
S. M.
, and
Hamed
,
H. N. A.
,
2015
, “
Multi-Objective Differential Evolution of Evolving Spiking Neural Networks for Classification Problems
,” Artificial Intelligence Applications and Innovations (IFIP Advances in Information and Communication Technology, Vol. 458), R. Chbeir, Y. Manolo-poulos, I. Maglogiannis, R. Alhajj, eds., Springer International Publishing, Cham, Switzerland, pp. 351–368.
You do not currently have access to this content.