In the present paper, efforts has been made to study the thermophysical performance (properties) of N photovoltaic thermal flat plate collectors coupled with double slope solar still (N-PVT-FPC-DSSS) and operating with helically coiled heat exchanger. The analysis has been performed for the optimized concentration of NPs (Al2O3 0.107%; TiO2 0.093%; and CuO 0.131%) and optimized basin fluid (base fluid/nanofluid) mass (50 kg) for different weather conditions of the month May (New Delhi). The Nusselt number (Nu) and Rayleigh number (Ra) are functions of thermophysical properties of nanofluids and strongly influence the natural convective heat transfer coefficient in the solar still. Therefore, these numbers have also been investigated for base fluid and Al2O3, TiO2, and CuO–water-based nanofluids in detail. Significant enhancement in natural convective heat transfer coefficient (Al2O3 67.03%; TiO2 63.56%; and CuO 71.23%) and Nusselt number (Al2O3 119.72%; TiO2 98.64%; CuO 151.62%) has been observed. The monthly productivity of the hybrid system found to be higher by using nanofluids (320.77 kg TiO2; 338.23 kg Al2O3, and 355.46 CuO) as expected from the heat transfer results. Moreover, the comparative study between the proposed hybrid system and passive DSSS has been carried out.

References

1.
Eibling
,
J. A.
,
Talbert
,
S. G.
, and
Lof
,
G. O. G.
,
1971
, “
Solar Stills for Community Use-Digest of Technology
,”
Sol. Energy
,
13
(
2
), pp.
263
276
.
2.
Soliman
,
H. S.
,
1976
,
Solar Still Coupled With a Solar Water Heater
,
Mosul University
,
Mosul, Iraq
.
3.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Estimation of Internal Heat Transfer Coefficients of a Hybrid (PV/T) Active Solar Still
,”
Sol. Energy
,
83
(
9
), pp.
1656
1667
.
4.
Mahian
,
O.
, and
Kianifar
,
A.
,
2010
, “
Mathematical Modelling and Experimental Study of a Solar Distillation System
,”
Proc. Inst. Mech. Eng., J.
,
225
(
5
), pp. 1203–1212.
5.
Dwivedi
,
V. K.
, and
Tiwari
,
G. N.
,
2010
, “
Experimental Validation of Thermal Model of a Double Slope Active Solar Still Under Natural Circulation Model
,”
Desalination
,
250
(
1
), pp.
49
55
.
6.
Gaur
,
M. K.
, and
Tiwari
,
G. N.
,
2010
, “
Optimization of Number of Collectors for Integrated PV/T Hybrid Active Solar Still
,”
Appl. Energy
,
87
(
5
), pp.
1763
1772
.
7.
Tiwari
,
G. N.
, and
Lawrence
,
L. A.
,
1991
, “
New Heat and Mass Transfer Relations for a Solar Still
,”
Energy Convers. Manage.
,
31
(
2
), pp.
201
203
.
8.
Tiwari
,
G. N.
,
Minocha
,
A.
,
Sharma
,
P. B.
, and
Khan
,
M. E.
,
1997
, “
Simulation of Convective Mass Transfer in a Solid Distillation Process
,”
Energy Convers. Manage.
,
38
(
8
), pp.
761
770
.
9.
Tsilingiris
,
P. T.
,
2007
, “
The Influence of Binary Mixture Thermo-Physical Properties in the Analysis of Heat and Mass Transfer Processes in Solar Distillation Systems
,”
Sol. Energy
,
81
(
12
), pp.
1482
1491
.
10.
Tsilingiris
,
P. T.
,
2010
, “
Modeling Heat and Mass Transport Phenomena at Higher Temperatures in Solar Distillation Systems - the Chilton-Colburn Analogy
,”
Sol. Energy
,
84
(
2
), pp.
308
317
.
11.
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Gaur
,
M. K.
,
2010
, “
Development of Empirical Relation to Evaluate the Heat Transfer Coefficients and Fractional Energy in Basin Type Hybrid (PV/T) Active Solar Still
,”
Desalination
,
250
(
1
), pp.
214
221
.
12.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer, A J. Therm. Energy Gener., Transp., Storage, Convers.
,
2
(
2
), pp.
151
170
.
13.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
,
2007
, “
Buoyancy- Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp. 4003–4010.
14.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A.
, and
Somchai
,
W.
,
2015
, “
Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH
,”
ASME J. Heat Transfer
,
135
(6), p. 061011.
15.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.
16.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2189
2195
.
17.
Zhang
,
L.
,
Liu
,
Y.
,
Wang
,
Y.
,
Jin
,
L.
,
Zhang
,
Q.
, and
Hu
,
W.
,
2018
, “
Experimental Study on the Enhancement of Mass Transfer Utilizing Fe3O4 Nanofluids
,”
Renewable Energy
,
140
(
1
), pp.
12404
12412
.
18.
Said
,
Z.
,
Saidur
,
R.
,
Hepbasli
,
A.
, and
Rahim
,
N. A.
,
2014
, “
New Thermophysical Properties of Water Based TiO2 Nanofluid—the Hysteresis Phenomenon Revisited
,”
Int. Commun. Heat Mass Transfer
,
58
, pp.
85
95
.
19.
Said
,
Z.
,
Sajid
,
M. H.
,
Saidur
,
R.
,
Kamalisarvestani
,
M.
, and
Rahim
,
N. A.
,
2013
, “
Radiative Properties of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
74
84
.
20.
Liu
,
J.
,
Wang
,
F.
,
Zhang
,
L.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2014
, “
Thermodynamic Properties and Thermal Stability of Ionic Liquid-Based Nanofluids Containing Graphene as Advanced Heat Transfer Fluids for Medium-to-High-Temperature Applications
,”
Renewable Energy
,
63
, pp.
519
523
.
21.
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Essa
,
F. A.
,
2014
, “
Enhancement of Modified Solar Still Integrated With External Condenser Using Nanofluids: An Experimental Approach
,”
Energy Convers. Manage.
,
78
, pp.
493
498
.
22.
Sharshir
,
S. W.
,
Peng
,
G.
,
Wu
,
L.
,
Yang
,
N.
,
Essa
,
F. A.
,
Elsheikhd
,
A. H.
,
Mohamede
,
S. I. T.
, and
Kabeel
,
A. E.
,
2017
, “
Enhancing the Solar Still Performance Using Nanofluids and Glass Cover Cooling: Experimental Study
,”
Appl. Therm. Eng.
,
113
, pp.
684
693
.
23.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Nanofluids on the Performance of Passive Double Slope Solar Still: A Comparative Study Using Characteristic Curve
,”
Desalination
,
388
, pp.
9
21
.
24.
Saleha
,
S. M.
,
Solimanb
,
A. M.
,
Sharaf
,
M. A.
,
Kaled
,
V.
, and
Gadgile
,
B.
,
2017
, “
Influence of Solvent in the Synthesis of Nano-Structured ZnO by Hydrothermal Method and Their Application in Solar-Still
,”
J. Environ. Chem. Eng.
,
5
(
1
), pp.
1219
1226
.
25.
Chen
,
W.
,
Zou
,
C.
,
Li
,
X.
, and
Li
,
L.
,
2017
, “
Experimental Investigation of SiC Nanofluids for Solar Distillation System: Stability, Optical Properties and Thermal Conductivity With Saline Water Based Fluid
,”
Int. J. Heat Mass Transfer
,
107
, pp.
264
270
.
26.
Sahota
,
L.
,
2017
, “
Shyam, G.N. Tiwari, Analytical Characteristic Equation of Nanofluid Loaded Active Double Slope Solar Still Coupled With Helically Coiled Heat Exchanger
,”
Energy Convers. Manage.
,
135
, pp.
308
326
.
27.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2017
, “
Exergoeconomic and Enviroeconomic Analyses of Hybrid Double Slope Solar Still Loaded With Nanofluids
,”
Energy Convers. Manage.
,
148
, pp.
413
430
.
28.
Mahian
,
O.
,
Kianifar
,
A.
,
Heris
,
S. Z.
,
Wen
,
D.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
, “
Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped With a Heat Exchanger
,”
Nano Energy
,
36
, pp. 134–155.
29.
Rashidi
,
S.
,
Bovand
,
M.
,
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2018
, “
Steps Optimization and Productivity Enhancement in a Nanofluid Cascade Solar Still
,”
Renewable Energy
,
118
, pp.
536
545
.
30.
Rashidi
,
S.
,
Akar
,
S.
,
Bovand
,
M.
, and
Ellahi
,
R.
,
2018
, “
Volume of Fluid Model to Simulate the Nanofluid Flow and Entropy Generation in a Single Slope Solar Still
,”
Renewable Energy
,
115
, pp.
400
410
.
31.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.
32.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in Solar Energy Field
,”
Renewable Energy
,
123
, pp.
398
406
.
33.
Wang
,
H.
,
Yang
,
W.
,
Cheng
,
L.
, and
Yan
,
C. G. H.
,
2018
, “
Chinese Ink: High Performance Nanofluids for Solar Energy
,”
Sol. Energy Mater. Sol. Cells
,
176
, pp.
374
380
.
34.
Zeinya
,
A.
,
Jinb
,
H.
,
Baib
,
L.
,
Linb
,
G.
, and
Wen
,
D.
,
2018
, “
A Comparative Study of Direct Absorption Nanofluids for Solar Thermal Applications
,”
Sol. Energy
,
161
, pp.
74
82
.
35.
Edalatpour
,
M.
,
Aryana
,
K.
,
Kianifar
,
A.
,
Tiwari
,
G. N.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2016
, “
Solar Stills: A Review of the Latest Developments in Numerical Simulations
,”
Sol. Energy
,
135
, pp.
897
922
.
36.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3-Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
37.
Farajollahi
,
B.
,
Etemad
,
S. G.
, and
Hojjat
,
M.
,
2010
, “
Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
12
17
.
38.
Yousefia
,
T.
,
Veysia
,
F.
,
Shojaeizadeha
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
39.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2014
, “
Optical Properties of Metal Oxides Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
46
54
.
40.
Rahman
,
M. M.
,
Mojumder
,
S.
,
Saha
,
S.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2014
, “
Augmentation of Natural Convection Heat Transfer in Triangular Shape Solar Collector by Utilizing Water Based Nanofluids Having a Corrugated Bottom Wall
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
117
127
.
41.
Rahman
,
M. M.
,
Mojumder
,
S.
,
Saha
,
S.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2014
, “
Effect of Solid Volume Fraction and Tilt Angle in a Quarter Circular Solar Thermal Collectors Filled With CNT–Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
79
90
.
42.
Zamzamian
,
A.
,
Rad
,
M. K.
,
Neyestani
,
M. K.
, and
Jamal-Abad
,
M. T.
,
2014
, “
An Experimental Study on the Effect of Cu-Synthesized/EG Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
71
, pp.
658
664
.
43.
Sahota
,
L.
,
2017
, “
Shyam, G.N. Tiwari, Energy Matrices, Enviroeconomic and Exergoeconomic Analysis of Passive Double Slope Solar Still With Water Based Nanofluids
,”
Desalination
,
409
, pp.
66
79
.
44.
Jing
,
D.
,
Hu
,
Y.
,
Liu
,
M.
,
Wei
,
J.
, and
Guo
,
L.
,
2015
, “
Preparation of Highly Dispersed Nanofluid and CFD Study of Its Utilization in a Concentrating PV/T System
,”
Sol. Energy
,
112
, pp.
30
40
.
45.
Wu
,
D.
,
Zhu
,
H.
,
Wang
,
L.
, and
Liu
,
L.
,
2009
, “
Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity
,”
Curr. Nanosci.
,
5
(
1
), pp.
103
112
.
46.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4051
4068
.
47.
Sahota, L., and Tiwari, G. N., 2016, “
Effect of Al2O3 Nanoparticles on the Performance of Passive Double Slope Solar Still
,”
Solar Energy
,
130
, pp. 260–272.
48.
Popiel
,
C.
, and
Wojtkowiak
,
J.
,
1998
, “
Simple Formulas for Thermo-Physical Properties of Liquid Water for Heat Transfer Calculations (From 0 °C to 150 °C)
,”
Heat Transfer Eng.
,
19
(
3
), pp.
87
101
.
49.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das Sarit
,
K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.
50.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.
51.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
52.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow Pipes, With Particular Reference to Transition Region Between Smooth Rough Pipe Laws
,”
J. Inst. Civil Eng.
,
11
(
4
), pp.
133
156
.
53.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effect of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.
54.
Khairul
,
M. A.
,
Saidur
,
R.
,
Rahman
,
M. M.
,
Alim
,
M. A.
,
Hossain
,
A.
, and
Abdin
,
Z.
,
2013
, “
Heat Transfer and Thermodynamic Analyses of a Helically Coiled Heat Exchanger Using Different Types of Nanofluids
,”
Int. J. Heat Mass Transfer
,
67
, pp.
398
403
.
55.
Tiwari
,
G. N.
, and
Tiwari
,
A.
,
2007
,
Solar Distillation Practice for Water Desalination Systems
,
Anamaya publications
,
New Delhi, India
.
56.
He
,
Q.
,
Zeng
,
S.
, and
Wang
,
W.
,
2015
, “
Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors With Nanofluids
,”
Appl. Therm. Eng.
,
88
, pp.
165
171
.
57.
Menbari
,
A.
,
Alemrajabi
,
A. A.
, and
Rezaei
,
A.
,
2016
, “
Heat Transfer Analysis and the Effect of CuO/Water Nanofluid on Direct Absorption Concentrating Solar Collector
,”
Appl. Therm. Eng.
,
104
, pp.
176
183
.
58.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2017
, “
Review on the Energy and Economic Efficiencies of Passive and Active Solar Distillation Systems
,”
Desalination
,
401
, pp.
151
179
.
You do not currently have access to this content.