An experimental study is performed to investigate water flow and heat transfer characteristics in silicon micro-pin-fin heat sinks with various pin–fin configurations and a conventional microchannel, with a length of 25 mm, a width of 2.4 mm, and a height of 0.11 mm. The micro-pin-fin heat sinks have different fin arrangements, fin shapes, and fin pitches. The results show that the micro-pin-fin heat sinks have the better overall thermal-hydraulic performance including the heat transfer enhancement and the pressure drop penalty compared to the conventional microchannel. A parametric study is carried out to investigate the effects of various pin-fin configurations on the flow and heat transfer characteristics. The linear relationship between fRe and Re is found for the water flow through the micro-pin-fin heat sinks for the first time. A new friction factor correlation is further developed based on the linear relationship between fRe and Re. Taking the effects of the various pin-fin configurations on the Nusselt number into consideration, a new Nusselt number correlation is also developed. The new correlations of friction factor and Nusselt number predict the experimental data well. An infrared thermo-imaging system was used to measure the temperature field of water heat transfer in the micro-pin-fin heat sinks and the conventional microchannel. The infrared thermo-images show the more uniform temperature profile in the transverse direction for the micro-pin-fin heat sinks than that for the conventional microchannel, which indicates the better heat transfer performance of the former than the latter. The dominant mechanism of heat transfer enhancement caused by the micro-pin-fins is the hydrodynamic effects, including fluid disturbance as well as the breakage and re-initialization of the thermal boundary layer near the wall of the heat sinks.

References

1.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
3.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
4.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
5.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.
6.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks—Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.
7.
Xu
,
F.
,
Wu
,
H.
, and
Liu
,
Z.
,
2017
, “
Flow Patterns During Flow Boiling Instability in Silicon-Based Pin-Fin Microchannels
,”
ASME J. Heat Transfer
,
140
(
3
), p.
031501
.
8.
Xu
,
F.
, and
Wu
,
H.
,
2018
, “
Effect of Pin-Fins on the Onset of Flow Instability of Water in Silicon-Based Microgap
,”
Int. J. Therm. Sci.
,
130
, pp.
496
506
.
9.
Marques
,
C.
, and
Kelly
,
K. W.
,
2004
, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
434
444
.
10.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
11.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.
12.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
,
2007
, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
479
487
.
13.
Moores
,
K. A.
, and
Joshi
,
Y. K.
,
2003
, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
999
1006
.
14.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122402
.
15.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part II: Pressure Drop Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.
16.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D. M.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
17.
Liu
,
M.
,
Liu
,
D.
,
Xu
,
S.
, and
Chen
,
Y.
,
2011
, “
Experimental Study on Liquid Flow and Heat Transfer in Micro Square Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5602
5611
.
18.
Liu
,
Z.
,
Zhang
,
C.
, and
Guan
,
N.
,
2011
, “
Experimental Investigation on Resistance Characteristics in Micro/Mini Cylinder Group
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
226
233
.
19.
Koşar
,
A.
,
Brandon
,
S.
, and
Peles
,
Y.
,
2011
, “
Hydrodynamic Characteristics of Crossflow Over MEMS-Based Pillars
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081201
.
20.
Lee
,
Y. J.
,
Chou
,
S. K.
, and
Lee
,
P. S.
,
2012
, “
Enhanced Thermal Transport in Microchannel Using Oblique Fins
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101901
21.
Lee
,
Y. J.
,
Singh
,
P. K.
, and
Lee
,
P. S.
,
2015
, “
Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins With Parametric Study
,”
Int. J. Heat Mass Transfer
,
81
, pp.
325
336
.
22.
Zhao
,
H.
,
Liu
,
Z.
,
Zhang
,
C.
,
Guan
,
N.
, and
Zhao
,
H.
,
2016
, “
Pressure Drop and Friction Factor of a Rectangular Channel With Staggered Mini Pin Fins of Different Shapes
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
57
69
.
23.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
T.
,
Zhang
,
M.
,
North
,
M.
, and
Cui
,
T.
,
2016
, “
Enhanced Heat Transfer of Heat Sink Channels With Micro Pin Fin Roughened Walls
,”
Int. J. Heat Mass Transfer
,
92
, pp.
617
627
.
24.
Taylor
,
J. R.
,
1982
,
An Introduction to Error Analysis: The Study of Uncertainty in Physical Measurements
,
University Science Books
,
Mill Valley, CA
.
25.
Xu
,
F.
,
Pan
,
Z.
, and
Wu
,
H.
,
2017
, “
Experimental Investigation on the Flow Transition in Different Pin-Fin Arranged Microchannels
,”
Microfluid. Nanofluid
,
22
(
1
), p.
11
.
26.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2017
, “
Hydrodynamic and Thermal Performance of Microchannels With Different Staggered Arrangements of Cylindrical Micro Pin Fins
,”
ASME J. Heat Transfer
,
139
(
6
), p.
062402
.
27.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2016
, “
Hydrodynamic and Thermal Performance of Microchannels With Different in-Line Arrangements of Cylindrical Micro Pin Fins
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122403
.
28.
İzci
,
T.
,
Koz
,
M.
, and
Koşar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
.
29.
Short
,
B. E.
,
Raad
,
P. E.
, and
Price
,
D. C.
,
2002
, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part 1: Friction Factor Correlations
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
389
396
.
30.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
,
1945
, “
A General Correlation of Friction Factors for Various Types of Surfaces in Cross Flow
,”
Trans. Am. Soc. Mech. Eng.
,
67
(8), pp.
643
660
.
31.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2014
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
32.
Wang
,
Y.
,
Houshmand
,
F.
,
Elcock
,
D.
, and
Peles
,
Y.
,
2013
, “
Convective Heat Transfer and Mixing Enhancement in a Microchannel With a Pillar
,”
Int. J. Heat Mass Transfer
,
62
, pp.
553
561
.
33.
Renfer
,
A.
,
Tiwari
,
M. K.
,
Tiwari
,
R.
,
Alfieri
,
F.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2013
, “
Microvortex-Enhanced Heat Transfer in 3D-Integrated Liquid Cooling of Electronic Chip Stacks
,”
Int. J. Heat Mass Transfer
,
65
, pp.
33
43
.
34.
Xia
,
G.
,
Chen
,
Z.
,
Cheng
,
L.
,
Ma
,
D.
,
Zhai
,
Y.
, and
Yang
,
Y.
,
2017
, “
Micro-PIV Visualization and Numerical Simulation of Flow and Heat Transfer in Three Micro Pin-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
119
, pp.
9
23
.
35.
Lee
,
P.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
36.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2005
, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5580
5601
.
37.
Park
,
H. S.
, and
Punch
,
J.
,
2008
, “
Friction Factor and Heat Transfer in Multiple Microchannels With Uniform Flow Distribution
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4535
4543
.
38.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.
39.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. in Heat Transfer
,
8
, pp.
93
160
.
40.
Short
,
B. E.
,
Raad
,
P. E.
, and
Price
,
D. C.
,
2002
, “
Performance of Pin Fin Cast Aluminum Coldwalls—Part 2: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
397
403
.
41.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3142
3155
.
42.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principle of Enhanced Heat Transfer
, 2nd ed.,
CRC Press
,
New York
.
You do not currently have access to this content.