In this paper, we have reported the effects of Hall current on magnetohydrodynamics (MHD) unsteady heat and mass transfer of Casson nanofluid flow through a vertical plate in the presence of radiation and chemical reaction. The model equations have been used for the Casson nanofluid and they include the effects of thermophoresis and Brownian motion. Then, the obtained model equations have been transformed into nondimensional form by the usual mathematical procedure of transformation and the resultant nondimensional couple of partial differential equations are solved by explicit finite difference technique. Then, the obtained results are plotted after stability test by using the graphical software tecplot-9 and these results indicate the fluid flow, temperature, and concentration distributions which are significantly invaded by the variation of different dimensionless parameters such as magnetic parameter, Schmidt number, thermal Grashof number, Lewis number, Prandtl number, mass Grashof number, Dufour number, thermophoresis parameter, Brownian motion parameter, chemical reaction, and radiation parameter on velocity, temperature, and concentration along with the skin friction coefficient, Nusselt number, and Sherwood number. Further, the results have been discussed also with the help of graphs. Furthermore, it is observed that with the increase of the Casson parameter, velocity puts down, whereas by increasing the heat generation parameter, the temperature profiles are decreased.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
International Mechanical Engineering Congress and Exhibition
, San Francisco, CA, Nov. 12–17, pp.
99
106
.https://ecotert.com/pdf/196525_From_unt-edu.pdf
2.
Ajam
,
H.
,
Jafari
,
S. S.
, and
Freidoonimehr
,
N.
, “
Analytical Approximation of MHD Nano-Fluid Flow Induced by a Stretching Permeable Surface Using Buongiorno's Model
,”
Ain Shams Eng. J.
(in press).
3.
Bilal
,
S.
,
Rehman
,
K. U.
,
Malik
,
M. Y.
,
Hussain
,
A.
, and
Awais
,
M.
,
2015
, “
Effect Logs of Double Diffusion on MHD Prandtl Nano Fluid Adjacent to 4 Stretching Surface by Way of Numerical Approach
,”
Results Phys.
, 7, pp.
470
479
.
4.
Holland
,
D. M.
,
Matthew
,
K.
,
Borg
,
D.
,
Lockerby
,
A.
, and
Reese
,
J. M.
,
2015
, “
Enhancing Nano-Scale Computational Fluid Dynamics With Molecular Pre-Simulations: Unsteady Problems and Design Optimisation
,”
Comput. Fluids
,
115
, pp.
46
53
.
5.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
,
Subba
,
R.
, and
Gorla
,
R.
,
2017
, “
Unsteady Three-Dimensional MHD Flow of a Nano Eyring-Powell Fluid past a Convectively Heated Stretching Sheet in the Presence of Thermal Radiation, Viscous Dissipation and Joule Heating
,”
J. Assoc. Arab Univ. Basic Appl. Sci.
,
23
(
1
), pp.
75
84
.
6.
Uddin
,
M. J.
,
Kalbani
,
K. S. A.
,
Rahman
,
M. M.
,
Alam
,
M. S.
,
Salti
,
N. A.
, and
Eltayeb
,
I. A.
,
2016
, “
Fundamentals of Nanofluids: Evolution, Applications and New Theory
,”
Official J. Biomathematical Soc. India
,
2
(1), pp.
1
32
.https://www.researchgate.net/publication/301201598_Fundamentals_of_Nanofluids_Evolution_Applications_and_New_Theory
7.
Sarkar
,
B. C.
,
Das
,
S.
, and
Jana
,
2013
, “
Hall Effects on Unsteady MHD Free Convective Flow Past an Accelerated Moving Vertical Plate With Viscous and Joule Dissipations
,”
Int. J. Comput. Appl.
,
70
(
24
), pp.
19
28
.
8.
Seth
,
G. S.
,
Sarkar
,
S.
, and
Hussain
,
S. M.
,
2014
, “
Effects of Hall Current, Radiation and Rotation on Natural Convection Heat and Mass Transfer Flow past a Moving Vertical Plate
,”
Ain Shams Eng. J.
,
5
(
2
), pp.
489
503
.
9.
Akbar
,
N. S.
,
Nadeem
,
S.
,
Lee
,
C.
,
Khan
,
Z. H.
, and
Haq
,
R. U.
,
2013
, “
Numerical Study of Williamson Nano Fluid Flow in an Asymmetric Channel
,”
Results Phys.
,
3
, pp.
161
166
.
10.
Ganga
,
B.
,
Ansari
,
S. M. Y.
,
Ganeshc
,
N. V.
, and
Hakeem
,
A. K. A.
,
2016
, “
MHD Flow of Boungiorno Model Nanofluid Over a Vertical Plate With Internal Heat Generation/Absorption
,”
Propulsin Power Res.
,
5
(
3
), pp.
211
222
.
11.
Khan
,
N. A.
,
Sultan
,
F.
, and
Rubbab
,
Q.
,
2015
, “
Optimal Solution of Nonlinear Heat and Mass Transfer in a Two-Layer Flow With Nano-Eyring–Powell Fluid
,”
Results Phys.
,
5
, pp.
199
205
.
12.
Raju
,
C. S. K.
,
Sandeep
,
N.
,
Sugunamma
,
V.
,
Babu
,
M. J.
, and
Reddy
,
J. V. R.
,
2016
, “
Heat and Mass Transfer in Magneto-Hydrodynamic Casson Fluid Over an Exponentially Permeable Stretching Surface
,”
Eng. Sci. Technol., Int. J.
,
19
(
1
), pp.
45
52
.
13.
Tripathy
,
R. S.
,
Dash
,
G. C.
,
Mishra
,
S. R.
, and
Baag
,
S.
,
2015
, “
Chemical Reaction Effect on MHD Free Convective Surface Over a Moving Vertical Plate Through Porous Medium
,”
Alexandria Eng. J.
,
54
(
3
), pp.
673
679
.
14.
Srikantha
,
G. V. P. N.
,
Srinivasa
,
D. G.
, and
Babub
,
B. S.
,
2015
, “
Characterization of Chemical Reaction on Heat Transfer Through the Nano Fluid
,”
Procedia Mater. Sci.
,
10
, pp.
10
18
.
15.
Mishra
,
S. R.
,
Baag
,
S.
, and
Mohapatra
,
D. K.
,
2016
, “
Chemical Reaction and Soret Effects on Hydromagnetic Micropolar Fluid Along a Stretching Sheet
,”
Eng. Sci. Technol. Int. J.
,
19
(
4
), pp.
1919
1928
.
16.
Kataria
,
H. R.
, and
Patel
,
H. R.
,
2016
, “
Soret and Heat Generation Effects on MHD Casson Fluid Flow past an Oscillating Vertical Plate Embedded Through Porous Medium
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2125
2137
.
17.
Biswas
,
R.
,
Mondal
,
M.
,
Sarkar
,
D. R.
, and
Ahmmed
,
S. F.
,
2017
, “
Effects of Radiation and Chemical Reaction on MHD Unsteady Heat and Mass Transfer of Casson Fluid Flow past a Vertical Plate
,”
J. Adv. Math. Comput. Sci.
,
23
(
2
), pp.
1
16
.
18.
Oyelakin
,
I. S.
,
Mondal
,
S.
, and
Sibanda
,
P.
,
2016
, “
Unsteady Casson Nanofluid Flow Over a Stretching Sheet With Thermal Radiation, Convective and Slip Boundary Conditions
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1025
1035
.
You do not currently have access to this content.