In this work, the effectiveness of the numerical simulations in advancing fundamental understanding of bubble dynamics and nucleate pool boiling heat transfer is discussed. The results of numerical simulations are validated with experiments on ground, in parabolic flights and on the International Space Station (ISS). As such validation is carried out when the level of gravity is varied over seven orders of magnitude. It is shown that reduced gravity stretches the length and time scales of the process and generally leads to degradation of rate of heat transfer associated with nucleate boiling.
Issue Section:
Review Article
References
1.
Nukiyama
, S.
, 1934
, “The Maximum and Minimum Values of Heat Transmitted From Metals to Boiling Water Under Atmospheric Pressure
,” J. Jpn. Soc. Mech. Eng.
, 37
, pp. 367
–374
.2.
Son
, G.
, Dhir
, V. K.
, and Ramanujapu
, N.
, 1999
, “Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,” ASME J. Heat Transfer
, 121
(3
), pp. 623
–631
.3.
Son
, G.
, Ramanujapu
, N. K.
, and Dhir
, V. K.
, 2002
, “Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,” ASME J. Heat Transfer
, 124
(1
), pp. 51
–62
.4.
Mukherjee
, A.
, and Dhir
, V. K.
, 2004
, “Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,” ASME J. Heat Transfer
, 126
(6
), pp. 1023
–1039
.5.
Wu
, J.
, and Dhir
, V. K.
, 2001
, “Numerical Simulation of Dynamics and Heat Transfer Associated With a Single Bubble in Subcooled Boiling and in the Presence of Noncondensables
,” ASME J. Heat Transfer
, 133
(4
), pp. 502
–515
.6.
Aktinol
, E.
, and Dhir
, V. K.
, 2012
, “Numerical Simulation of Nucleate Boiling Phenomenon Coupled With Thermal Response of the Solid
,” Microgravity Sci. Technol.
, 24
(4
), pp. 255
–265
.7.
Dhir
, V. K.
, Warrier
, G. R.
, and Aktinol
, E.
, 2012
, “Bubble Dynamics During Pool Boiling Under Microgravity Conditions
,” Comput. Therm. Sci.
, 4
(6
), pp. 525
–538
.8.
Dhir
, V. K.
, Warrier
, G. R.
, and Aktinol
, E.
, 2013
, “Numerical Simulation of Pool Boiling: A Review
,” ASME J. Heat Transfer
, 135
(6
), p. 061502
.9.
Garg
, D.
, 2017
, “A Unified Numerical Model for Boiling Curve With Parallel Computing
,” Ph.D. dissertation, UCLA, Los Angeles, CA.10.
Juric
, D.
, and Tryggvason
, G.
, 1998
, “Computations of Boiling Flows
,” Int. J. Multiphase Flows
, 24
(3
), pp. 387
–410
.11.
Gong
, S.
, and Cheng
, F.
, 2015
, “Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,” Int. J. Heat Mass Transfer
, 85
, pp. 635
–646
.12.
Yazdani
, M.
, Radcliff
, T.
, Soteriou
, M.
, and Alahyaw
, A. A.
, 2016
, “A High-Fidelity Approach Towards Simulation of Pool Boiling
,” Phys. Fluids
, 28
(1
), pp. 1
–30
.13.
Lay
, J. H.
, and Dhir
, V. K.
, 1995
, “Shape of a Vapor Stem During Nucleate Boling of Saturated Liquids
,” ASME J. Heat Transfer
, 117
(2
), pp. 394
–401
.14.
Sussman
, M.
, Smereka
, P.
, and Osher
, S.
, 1994
, “A Level Set Approach for Computing Solution to Incompressible Two Phase Flow
,” J. Comput. Phys.
, 114
(1
), pp. 146
–159
.15.
Aktinol
, E.
, Warrier
, G. R.
, and Dhir
, V. K.
, 2014
, “Single Bubble Dynamics Under Microgravity Conditions in the Presence of Dissolved Gas in the Liquid
,” Int. J. Heat Mass Transfer
, 79
, pp. 251
–268
.16.
Moore
, F. D.
, and Mesler
, R. B.
, 1961
, “The Measurement of Rapid Surface Temperature Fluctuation During Nucleate Boiling of Water
,” AIChE J.
, 7
(4
), pp. 620
–624
.17.
Zou
, A.
, Chenana
, A.
, Agrawal
, A.
, Wayner
, P.
, and Maroo
, S.
, 2016
, “Steady State Vapor Bubble in Pool Boiling
,” Sci. Rep.
, 6
, p. 20240
.18.
Basu
, N.
, Warrier
, G. R.
, and Dhir
, V. K.
, 2002
, “Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Boiling
,” ASME J. Heat Transfer
, 124
(4
), pp. 717
–728
.19.
Gaertner
, R. F.
, 1965
, “Photographic Study on a Horizontal Surface
,” ASME J. Heat Transfer
, 87
(1
), pp. 17
–27
.20.
Lee
, L. Y. W.
, Chen
, J. C.
, and Nelson
, R. A.
, 1985
, “Liquid Solid Contact Measurements Using a Surface Thermocouple Temperature Probe in Atmospheric Pool Boiling Water
,” Int. J. Heat Mass Transfer
, 28
(8
), pp. 1415
–1423
.21.
Shoji
, M.
, Witte
, L. C.
, Yokoya
, S.
, Kawakami
, M.
, and Kuroki
, H.
, 1991
, “Measurement of Liquid Solid Contact Using Micro-Thermocouples in Pool Transition Boiling of Water on a Horizontal Copper Surface
,” ASME/JSME Thermal Engineering Joint Conference,
Reno, NV, Mar. 17–22, pp. 333
–338
.22.
Qiu
, D. M.
, Dhir
, V. K.
, Hasan
, M. M.
, and Chao
, D.
, 2000
, “Single and Multiple Bubble Dynamics During Nucleate Boiling Under Low Gravity Conditions
,” 34th National Heat Transfer Conference
, Pittsburg, PA, Aug. 20–22, pp. 1
–15
.23.
Siegel
, R.
, and Keshock
, E. G.
, 1964
, “Effects of Reduced Gravity on Nucleate Boiling Bubble Dynamics in Saturated Water
,” AIChE J.
, 10
(4
), pp. 509
–517
.24.
Straub
, J.
, 2001
, “Boiling Heat Transfer and Bubble Dynamics in Microgravity
,” Adv. Heat Transfer
, 35
, pp. 57
–172
.Copyright © 2019 by ASME
You do not currently have access to this content.