Abstract

Cryogenic turboexpander is an essential component to produce the refrigeration effect in various helium liquefaction systems. The convergent nozzle and small-scale radial inflow turbine (turboexpander) are the important components that are responsible for increasing the performance of the cycle. In this paper, an optimum preliminary design approach of the turbine and nozzle is explained using real gas properties. Initially, the Sobol method is used to determine the sensitivity indices and optimized range of ten important nondimensional and geometrical variables for better performance of the radial turbine. Three turboexpanders of a modified Collins cycle-based helium liquefaction system have been designed considering the optimized ranges. The proposed method improves the isentropic efficiency and power output of the turbine up to 3.86% and 5.14%, respectively, as compared to the initial design. Hereafter, a comparative three-dimensional numerical analysis is conducted to characterize the flow physics and thermal properties of three turboexpander systems (16 bar and 40 K, 6 bar and 20 K, and 16 bar and 10 K). The thermal and fluid flow properties such as temperature, Prandtl number, static enthalpy, entropy, velocity vectors, Reynolds number, and turbulence kinetic energy are determined at different spans and streamwise locations. Moreover, the present numerical results are also verified with the experimental and numerical results obtained from the existing literature. The study highlights the optimal range of design variables for helium turbine, the methodology for helium liquefaction system, and the numerical analysis to understand the flow physics and thermal properties of helium near its boiling point.

References

1.
Reif-Acherman
,
S.
,
2009
, “
Several Motivations, Improved Procedures, and Different Contexts: The First Liquefactions of Helium Around the World
,”
Int. J. Refrig.
,
32
(
5
), pp.
738
762
.10.1016/j.ijrefrig.2009.02.019
2.
Dadone
,
A.
, and
Pandolfi
,
M.
,
1969
, “
A Method for Evaluating the Off-Design Performance of a Radial Inflow Turbine and Comparison With Experiments
,”
Int. J. Mech. Sci.
,
11
(
3
), pp.
241
252
.10.1016/0020-7403(69)90043-5
3.
Ventura
,
C. A.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.10.1115/1.4006174
4.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
, and
Moazami
,
N.
,
2015
, “
Modelling and Optimization of Organic Rankine Cycle Based on a Small-Scale Radial Inflow Turbine
,”
Energy Convers. Manag.
,
91
, pp.
186
198
.10.1016/j.enconman.2014.12.003
5.
Fiaschi
,
D.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2015
, “
Design and Performance Prediction of Radial ORC Turboexpanders
,”
Appl. Energy
,
138
, pp.
517
532
.10.1016/j.apenergy.2014.10.052
6.
Sauret
,
E.
,
2012
, “
Open Design of High Pressure Ratio Radial-Inflow Turbine for Academic Validation
,”
ASME Paper No. IMECE2012-88315
.10.1115/IMECE2012-88315
7.
Ghosh
,
S. K.
,
Sahoo
,
R. K.
, and
Sarangi
,
S. K.
,
2011
, “
Mathematical Analysis for Off-Design Performance of Cryogenic Turboexpander
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003661
8.
Watanabe
,
I.
,
Ariga
,
I.
, and
Mashimo
,
T.
,
1971
, “
Effect of Dimensional Parameters of Impellers on Performance Characteristics of a Radial-Inflow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
93
(
1
), pp.
81
102
.10.1115/1.3445411
9.
Jones
,
A. C.
,
1996
, “
Design and Test of a Small, High Pressure Ratio Radial Turbine
,”
ASME J. Turbomach.
,
118
(
2
), pp.
362
370
.10.1115/1.2836651
10.
Izumi
,
H.
,
Harada
,
S.
,
Matsubara
,
K.
, and
Saito
,
S.
,
1986
, “
Development of Small Size Claude Cycle Helium Refrigerator With Micro Turbo-Expander
,”
Adv. Cryog. Eng.
,
31
, pp.
811
818
.
11.
Yang
,
K.
,
He
,
H.
,
Ke
,
G.
, and
Li
,
G.
,
1990
, “
Application and Test of Miniature Gas Bearing Expansion Turbines
,”
Adv. Cryog. Eng.
,
35
, pp.
997
1003
.10.1007/978-1-4613-0639-9_120
12.
Ino
,
N.
,
Machida
,
A.
,
Ttsugawa
,
K.
,
Arai
,
Y.
,
Matsuki
,
M.
,
Hashimoto
,
H.
, and
Yasuda
,
A.
,
1992
, “
Development of High Expansion Ratio Helium Turboexpander
,”
Adv. Cryog. Eng.
,
37
, pp.
835
844
.10.1007/978-1-4615-3368-9_9
13.
Davydenkov
,
I.
,
Davydov
,
A.
, and
Perestoronin
,
G.
,
1992
, “
Hydrogen and Nitrogen Turboexpanders With High Gas Expansion Ratios
,”
Cryogenic
,
32
, pp.
84
86
.10.1016/0011-2275(92)90115-Q
14.
Sixsmith
,
H.
, and
Swift
,
W.
,
1982
, “
A Pair of Miniature Helium Expansion Turbines
,”
Adv. Cryog. Eng.
,
27
, pp.
511
523
.https://www.osti.gov/biblio/6009179-pair-miniature-helium-expansion-turbines
15.
JoemonChakravarty
,
A.
,
Menson
,
R.
,
Goyal
,
M.
,
Ahmed
,
N.
,
Jadhav
,
M.
,
Rane
,
T.
,
S R Nair
,
S. R.
,
Kumar
,
J.
,
Kumar
,
N.
,
Bharti
,
S. K.
,
Jain
,
A.
, and
Joemon
,
V.
,
2017
, “
Development and Performance Evaluation of High Speed Cryogenic Turboexpanders at BARC, India
,”
Proceedings of the CEC 2017
,
Madison, WI
, July 9–13, p.
012028
.10.1088/1757-899X/278/1/012028
16.
Kumar
,
M.
,
Panda
,
D.
,
Behera
,
S. K.
, and
Sahoo
,
R. K.
,
2019
, “
Experimental Investigation and Performance Prediction of a Cryogenic Turboexpander Using Artificial Intelligence Techniques
,”
Appl. Therm. Eng.
,
162
, p.
114273
.10.1016/j.applthermaleng.2019.114273
17.
Jansen
,
W.
, and
Qvale
,
E.
,
1967
, “
A Rapid Method for Predicting the Off-Design Performance of Radial-Inflow Turbines
,”
ASME Paper No. 67-WA/GT-3
.10.1115/67-WA/GT-3
18.
Baines
,
N.
,
1998
, “
A Mean Line Prediction Method for Radial Turbine Efficiency
,”
IMECHE Conference Transactions, Turbocharging Air Management Systems
, Vol.
11
3–5, London, UK, Nov. 3–5, pp.
45
56.
19.
Meitner
,
P. L.
, and
Glassman
,
A. J.
,
1980
, “
Off-Design Performance Loss Model for Radial Turbines With Pivoting, Variable-Area Stators
,”
NASA, Lewis Research Center
,
Cleveland, OH
, Paper No. NASA-E-4551.
20.
Sam
,
A. A.
, and
Ghosh
,
P.
,
2017
, “
Flow Field Analysis of High-Speed Helium Turboexpander for Cryogenic Refrigeration and Liquefaction Cycles
,”
Cryogenic
,
82
, pp.
1
14
.10.1016/j.cryogenics.2017.01.004
21.
Sam
,
A. A.
,
Mondal
,
J.
, and
Ghosh
,
P.
,
2017
, “
Effect of Rotation on the Flow Behaviour in a High-Speed Cryogenic Microturbine Used in Helium Applications
,”
Int. J. Refrig.
,
81
, pp.
111
122
.10.1016/j.ijrefrig.2017.05.026
22.
Chang
,
H.-M.
,
Ryu
,
K. N.
, and
Baik
,
J. H.
,
2018
, “
Thermodynamic Design of Hydrogen Liquefaction Systems With Helium or Neon Brayton Refrigerator
,”
Cryogenic
,
91
, pp.
68
76
.10.1016/j.cryogenics.2018.02.007
23.
Ke
,
C.
,
Xiong
,
L.
,
Peng
,
N.
,
Dong
,
B.
,
Li
,
K.
,
Li
,
J.
, and
Liu
,
L.
,
2017
, “
Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space in High-Speed Micro Turbine Stators
,”
Cryogenic
,
88
, pp.
10
16
.10.1016/j.cryogenics.2017.09.004
24.
Zheng
,
Y.
,
Hu
,
D.
,
Cao
,
Y.
, and
Dai
,
Y.
,
2017
, “
Preliminary Design and Off-Design Performance Analysis of an Organic Rankine Cycle Radial-Inflow Turbine Based on Mathematic Method and CFD Method
,”
Appl. Therm. Eng.
,
112
, pp.
25
37
.10.1016/j.applthermaleng.2016.10.036
25.
Jubori
,
A. A.
,
Daabo
,
A.
,
Al-Dadah
,
R. K.
,
Mahmoud
,
S.
, and
Ennil
,
A. B.
,
2016
, “
Development of Microscale Axial and Radial Turbines for Low-Temperature Heat Source Driven Organic Rankine Cycle
,”
Energy Convers. Manag.
,
130
, pp.
141
155
.10.1016/j.enconman.2016.10.043
26.
Li
,
Y.
, and
Ren
,
X.-D.
,
2016
, “
Investigation of the Organic Rankine Cycle (ORC) System and the Radial Inflow Turbine Design
,”
Appl. Therm. Eng.
,
96
, pp.
547
554
.10.1016/j.applthermaleng.2015.12.009
27.
Kumar
,
M.
,
Panda
,
D.
,
Kumar
,
A.
,
Sahoo
,
R. K.
, and
Behera
,
S. K.
,
2019
, “
A Methodology for the Performance Prediction: Flow Field and Thermal Analysis of a Helium Turboexpander
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
11
), p.
484
.10.1007/s40430-019-1989-z
28.
Kumar
,
M.
,
Panda
,
D.
,
Kumar
,
A.
,
Sahoo
,
R. K.
, and
Behera
,
S. K.
,
2019
, “
Preliminary Design, Flow Field, and Thermal Performance Analysis of a Helium Turboexpander: A Numerical Approach
,”
SN Appl. Sci.
,
1
(
11
), p.
14821
.10.1007/s42452-019-1503-3
29.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
,
ASME Press
,
New York
.
30.
Kumar
,
M.
,
Behera
,
S. K.
,
Kumar
,
A.
, and
Sahoo
,
R. K.
,
2019
, “
Numerical and Experimental Investigation to Visualize the Fluid Flow and Thermal Characteristics of a Cryogenic Turboexpander
,”
Energy
,
189
, p.
116267
.10.1016/j.energy.2019.116267
31.
Kumar
,
M.
,
Panda
,
D.
,
Sahoo
,
R. K.
, and
Behera
,
S. K.
,
2020
, “
Performance Prediction, Numerical and Experimental Investigation to Characterize the Flow Field and Thermal Behavior of a Cryogenic Turboexpander
,”
Heat Mass Transfer
,
56
(
3
), pp.
1015
1036
.10.1007/s00231-019-02777-w
32.
ANSYS
,
2013
, “
ANSYS CFX User's Manual, 13.0
,”
User Manual of Ansys Inc
,
Canonsburg, PA
.
33.
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Lemmon
,
E. W.
,
1997
, “
Thermodynamic Properties of Cryogenic Fluids
,”
Spinger
,
New York
.
34.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
,
McGraw-Hill Book Co
,
New York
.
35.
Aspentech
,
2008
, “
User Guide: ASPEN Engineering Suits 7.0
,”
User's Manual
,
Aspentech
.
36.
Thomas
,
R. J.
,
Dutta
,
R.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
,
2012
, “
Applicability of Equations of State for Modeling Helium Systems
,”
Cryogenic
,
52
(
7–9
), pp.
375
381
.10.1016/j.cryogenics.2012.03.002
37.
Kumar
,
M.
,
Sahoo
,
R. K.
, and
Behera
,
S. K.
,
2019
, “
Design and Numerical Investigation to Visualize the Fluid Flow and Thermal Characteristics of Non-Axisymmetric Convergent Nozzle
,”
Eng. Sci. Technol., Int. J.
,
22
(
1
), pp.
294
312
.10.1016/j.jestch.2018.10.006
38.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey, Oct. 12–17, pp.
625
632
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
39.
Al Jubori
,
A. M.
,
Al-Dadah
,
R. K.
,
Mahmoud
,
S.
, and
Daabo
,
A.
,
2017
, “
Modelling and Parametric Analysis of Small-Scale Axial and Radial-Outflow Turbines for Organic Rankine Cycle Applications
,”
Appl. Energy
,
190
, pp.
981
996
.10.1016/j.apenergy.2016.12.169
You do not currently have access to this content.