Abstract

This research effort is related to the detailed analysis of the temporal evolution of thermal boundary layer(s) under periodic excitations. In the presence of oscillations, the nonlinear interaction leads to the formation of secondary flows, commonly known as acoustic streaming. However, the small spatial scales and the inherent unsteady nature of streaming have presented challenges for prior numerical investigations. In order to address this void in numerical framework, the development of a three-tier numerical approach is presented. As a first layer of fidelity, a laminar model is developed for fluctuations and streaming flow calculations in laminar flows subjected to traveling wave disturbances. At the next level of fidelity, two-dimensional (2D) U-RANS simulations are conducted across both laminar and turbulent flow regimes. This is geared toward extending the parameter space obtained from laminar model to turbulent flow conditions. As the third level of fidelity, temporally and spatially resolved direct numerical simulation (DNS) simulations are conducted to simulate the application relevant compressible flow environment. The exemplary findings indicate that in certain parameter space, both enhancement and reduction in heat transfer can be obtained through acoustic streaming. Moreover, the extent of heat transfer modulations is greater than alterations in wall shear, thereby surpassing Reynolds analogy.

References

1.
Kalinin
,
E. K.
, and
Dreitser
,
G. A.
,
1998
, “
Heat Transfer Enhancement in Heat Exchangers
,”
Adv. Heat Transfer
, 31, pp.
159
332
.10.1016/S0065-2717(08)70242-9
2.
Lighthill
,
S. J.
,
1954
, “
The Response of Laminar Skin Friction and Heat Transfer to Fluctuations in the Stream Velocity
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
224
(
1156
), pp.
1
23
.10.1098/rspa.1954.0137
3.
Telionis
,
D. P.
, and
Romaniuk
,
M. S.
,
1978
, “
Velocity and Temperature Streaming in Oscillating Boundary Layers
,”
AIAA J.
,
16
(
5
), pp.
488
495
.10.2514/3.60916
4.
Stuart
,
J. T.
,
1966
, “
Double Boundary Layers in Oscillatory Viscous Flow
,”
J. Fluid Mech.
,
24
(
4
), pp.
673
687
.10.1017/S0022112066000910
5.
Lin
,
C. C.
,
1957
, “
Motion in the Boundary Layer With a Rapidly Oscillating External Flow
,”
Ninth International Congress of Applied Mechanics
,
Brussels, Belgium
, Sept. 5–13, p.
155
.
6.
Patel
,
M. H.
,
1975
, “
On Laminar Boundary Layers in Oscillatory Flow
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
347
(
1648
), pp.
99
123
.10.1098/rspa.1975.0200
7.
Moschandreou
,
T.
, and
Zamir
,
M.
,
1997
, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2461
2466
.10.1016/S0017-9310(96)00266-9
8.
Saavedra
,
J.
,
Paniagua
,
G.
, and
Lavagnoli
,
S.
,
2018
, “
On the Transient Response of the Turbulent Boundary Layer Inception in Compressible Flows
,”
J. Fluid Mech.
,
850
, pp.
1117
1141
.10.1017/jfm.2018.502
9.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
.10.1063/1.1359766
10.
Costamagna
,
P.
,
Vittori
,
G.
, and
Blondeaux
,
P.
,
2003
, “
Coherent Structures in Oscillatory Boundary Layers
,”
J. Fluid Mech.
,
474
, pp.
1
33
.10.1017/S0022112002002665
11.
Wang
,
L.
, and
Lu
,
X. Y.
,
2004
, “
An Investigation of Turbulent Oscillatory Heat Transfer in Channel Flows by Large Eddy Simulation
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2161
2172
.10.1016/j.ijheatmasstransfer.2003.11.010
12.
Jensen
,
B. L.
,
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1989
, “
Turbulent Oscillatory Boundary Layers at High Reynolds Numbers
,”
J. Fluid Mech.
,
206
, pp.
265
297
.10.1017/S0022112089002302
13.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
75
(
2
), pp.
193
207
.10.1017/S0022112076000177
14.
Sleath
,
J. F. A.
,
1987
, “
Turbulent Oscillatory Flow Over Rough Beds
,”
J. Fluid Mech.
,
182
(
1
), pp.
369
409
.10.1017/S0022112087002374
15.
Hill
,
P. G.
, and
Stenning
,
A. H.
,
1960
, “
Laminar Boundary Layers in Oscillatory Flow
,”
J. Basic Eng.
,
82
(
3
), pp.
593
607
.10.1115/1.3662672
16.
Nickerson
,
R. J.
,
1957
, “
The Effect of Free Stream Oscillations on the Laminar Boundary Layers on a Flat Plate
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
17.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Arpaci
,
V. S.
,
1992
, “
Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2311
2325
.10.1016/0017-9310(92)90074-3
18.
Keil
,
R. H.
, and
Baird
,
M. H. I.
,
1971
, “
Enhancement of Heat Transfer by Flow Pulsation
,”
Ind. Eng. Chem. Process Des. Dev.
,
10
(
4
), pp.
473
478
.10.1021/i260040a008
19.
Kaiping
,
P.
,
1983
, “
Unsteady Forced Convective Heat Transfer From a Hot Film in Non-Reversing and Reversing Shear Flow
,”
Int. J. Heat Mass Transfer
,
26
(
4
), pp.
545
556
.10.1016/0017-9310(83)90006-6
20.
Niida
,
T.
,
Yoshida
,
T.
,
Yamashita
,
R.
, and
Nakayama
,
S.
,
1974
, “
The Influence of Pulsation on Laminar Heat Transfer in Pipes
,”
Chem. Eng.
,
38
(
1
), pp.
47
53
.10.1252/kakoronbunshu1953.38.47
21.
FUJITA
,
N.
, and
TSUBOUCHI
,
T.
,
1982
, “
An Experimental Study of Unsteady Heat Transfer From a Flat Plate to an Oscillating Air Flow,
Trans. Japan Soc. Mech. Eng. Series B
,
48
(
431
), pp.
1330
1338
.10.1299/kikaib.48.1330
22.
Jackson
,
T. W.
, and
Purdy
,
K. R.
,
1965
, “
Resonant Pulsating Flow and Convective Heat Transfer
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
507
512
.10.1115/1.3689145
23.
Miller
,
J. A.
,
1969
, “
Heat Transfer in the Oscillating Turbulent Boundary Layer
,”
ASME J. Eng. Power
,
91
(
4
), pp.
239
244
.10.1115/1.3574744
24.
Feiler
,
C. E.
,
1964
, “
Experimental Heat Transfer and Boundary Layer Behavior With 100-CPS Oscillations
,”
NASA
,
Washington, DC
, Report No. 2531.
25.
Martinelli
,
R. C.
,
Boelter
,
L. M. K.
,
Weinberg
,
E. B.
, and
Yakahi
,
S.
,
1943
, “
Heat Transfer to a Fluid Flowing Periodically at Low Frequencies in a Vertical Tube
,”
Trans. ASME
,
65
, pp.
789
798
.
26.
Barnett
,
D. O.
, and
Vachon
,
R. I.
,
1970
, “
An Analysis of Convective Heat Transfer for Pulsating Flow in a Tube
,”
Fourth International Heat Transfer Conference
, Aug. 31–Sept. 5, Paris Versailles, France, pp.
1
11
.
27.
Park
,
J. S.
,
Taylor
,
M. F.
, and
McEligot
,
D. M.
,
1982
, “
Heat Transfer to Pulsating Turbulent Gas Flow
,”
Seventh International Heat Transfer Conference
,
Munich, West Germany
, Sept. 8–10, pp.
105
110
.
28.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2003
, “
A Robust High-Order Compact Method for Large Eddy Simulation
,”
J. Comput. Phys.
,
191
(
2
), pp.
392
419
.10.1016/S0021-9991(03)00322-X
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
30.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng
,
130
(
7
), p. 0
78001
.10.1115/1.2960953
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary- Layer Theory
,
Springer-Verlag
,
New York
.
32.
Agarwal
,
T.
,
Julius
,
S.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2017
, “
Sound Excitation Effects on Forced Convection Heat Transfer
,”
Active Flow Control: Techniques and Applications
, VKI LS2017-04.
33.
Chan
,
T. F.
,
1984
, “
Stability Analysis of Finite Difference Schemes for the Advection-Diffusion Equation
,”
SIAM J. Numer. Anal.
,
21
(
2
), pp.
272
284
.10.1137/0721020
34.
Thomas
,
L.
,
1949
, “
Elliptic Problems in Linear Differential Equations Over a Network
,”
Watson Scientific Computing Laboratory Report, Columbia University
,
New York
.
35.
Coleman
,
G. N.
,
Kim
,
J.
, and
Moser
,
R. D.
,
1995
, “
A Numerical Study of Turbulent Supersonic Isothermal-Wall Channel Flow
,”
J. Fluid Mech.
,
305
(
1
), p.
159
.10.1017/S0022112095004587
36.
Evans
,
R. L.
,
1989
, “
Computation of Unsteady Laminar Boundary Layers Subject to Traveling-Wave Freestream Fluctuations
,”
AIAA Journal
,
27
(
11
), pp.
1644
1646
.10.2514/3.10313
37.
Spalart
,
P.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.10.1016/S0142-727X(00)00007-2
38.
Yao
,
J.
,
Chen
,
X.
, and
Hussain
,
F.
,
2018
, “
Drag Control in Wall-Bounded Turbulent Flows Via Spanwise Opposed Wall-Jet Forcing
,”
J. Fluid Mech.
,
852
, pp.
678
709
.10.1017/jfm.2018.553
39.
Rahbari
,
I.
, and
Scalo
,
C.
,
2016
, “
Linear Stability Analysis of Compressible Channel Flow Over Porous Walls
,”
Whither Turbulence and Big Data in the 21st Century
?,
Springer International Publishing
,
Cham, Switzerland
, pp.
451
467
.
40.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), p.
740
.10.1115/1.2720504
You do not currently have access to this content.