Abstract

This paper studies the linear stability of the unsteady boundary-layer flow and heat transfer over a moving wedge. Both mainstream flow outside the boundary layer and the wedge velocities are approximated by the power of the distance along the wedge wall. In a similar manner, the temperature of the wedge is approximated by the power of the distance that leads to a wall exponent temperature parameter. The governing boundary layer equations admit a class of self-similar solutions under these approximations. The Chebyshev collocation and shooting methods are utilized to predict the upper and lower branch solutions for various parameters. For these two solutions, the velocity, temperature profiles, wall shear-stress, and temperature gradient are entirely different and need to be assessed for their stability as to which of these solutions is practically realizable. It is shown that algebraically growing steady solutions do exist and their effects are significant in the unsteady context. The resulting eigenvalue problem determines whether or not the steady solutions are stable. There are interesting results that are linked to bypass an important class of boundary layer flow and heat transfer. The hydrodynamics behind these results are discussed in some detail.

References

References
1.
Schlichting
,
H.
, and
Gersten
,
K.
,
2004
,
Boundary-Layer Theory
, 8th ed.,
Springer-Verlag
,
New Delhi, India
.
2.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
2002
, “
Unsteady Heat Transfer in Impulsive Falkner–Skan Flows: Constant Wall Temperature Case
,”
Eur. J. Mech.-B/Fluids
,
21
(
4
), pp.
447
468
.10.1016/S0997-7546(02)01193-7
3.
Kuo
,
B. L.
,
2005
, “
Heat Transfer Analysis for the Falkner–Skan Wedge Flow by Differential Transform Method
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
5036
5046
.10.1016/j.ijheatmasstransfer.2003.10.046
4.
Ali
,
M. E.
,
2006
, “
The Effect of Variable Viscosity on Mixed Convection Heat Transfer Along a Vertical Moving Surface
,”
Int. J. Therm. Sci.
,
45
(
1
), pp.
60
69
.10.1016/j.ijthermalsci.2005.04.006
5.
Arnold
,
J. C.
,
Asir
,
A. A.
,
Somasundaram
,
S.
, and
Christopher
,
T.
,
2010
, “
Heat Transfer in a Viscoelastic Boundary Layer Flow Over a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1112
1118
.10.1016/j.ijheatmasstransfer.2009.10.046
6.
Hayat
,
T.
,
Mustafa
,
M.
, and
Pop
,
I.
,
2010
, “
Heat and Mass Transfer for Soret and Dufour's Effect on Mixed Convection Boundary Layer Flow Over a Stretching Vertical Surface in a Porous Medium Filled With a Viscoelastic Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1183
1196
.10.1016/j.cnsns.2009.05.062
7.
Mohammadi
,
F.
,
Hosseini
,
M. M.
,
Dehghan
,
A.
, and
Ghaini
,
F. M. M.
,
2012
, “
Numerical Solutions of Falkner-Skan Equation With Heat Transfer
,”
Stud. Nonlinear Sci.
,
3
(
3
), pp.
86
93
.http://www.ijircet.com/admin/ckeditor/plugins/doksoft_uploader/userfiles/17_1.pdf
8.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2010
, “
Melting Heat Transfer in Boundary Layer Stagnation-Point Flow Towards a Stretching Sheet
,”
Phys. Lett. A
,
374
(
40
), pp.
4075
4079
.10.1016/j.physleta.2010.08.032
9.
Turkyilmazoglu
,
M.
,
2013
, “
The Analytical Solution of Mixed Convection Heat Transfer and Fluid Flow of a MHD Viscoelastic Fluid Over a Permeable Stretching Surface
,”
Int. J. Mech. Sci.
,
77
, pp.
263
268
.10.1016/j.ijmecsci.2013.10.011
10.
Turkyilmazoglu
,
M.
,
2015
, “
Slip Flow and Heat Transfer Over a Specific Wedge: An Exactly Solvable Falkner–Skan Equation
,”
J. Eng. Math.
,
92
(
1
), pp.
73
81
.10.1007/s10665-014-9758-6
11.
Dinarvand
,
S.
,
Hosseini
,
R.
, and
Pop
,
I.
,
2015
, “
Unsteady Convective Heat and Mass Transfer of a Nanofluid in Howarths Stagnation Point by Buongiornos Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
5
), pp.
1176
1197
.10.1108/HFF-04-2014-0095
12.
Othman
,
N. A.
,
Yacob
,
N. A.
,
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2017
, “
Mixed Convection Boundary-Layer Stagnation Point Flow Past a Vertical Stretching/Shrinking Surface in a Nanofluid
,”
Appl. Therm. Eng.
,
115
, pp.
1412
1417
.10.1016/j.applthermaleng.2016.10.159
13.
Soid
,
S. K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2017
, “
Boundary Layer Flow Past a Continuously Moving Needle in a Nanofluid
,”
Appl. Therm. Eng.
,
114
, pp.
58
64
.10.1016/j.applthermaleng.2016.11.165
14.
Afridi
,
M. I.
,
Qasim
,
M.
, and
Makinde
,
O. D.
,
2019
, “
Entropy Generation Due to Heat and Mass Transfer in a Flow of Dissipative Elastic Fluid Through a Porous Medium
,”
ASME J. Heat Transfer
,
141
(
2
), p.
022002
.10.1115/1.4041951
15.
Fetecau
,
C.
,
Vieru
,
D.
,
Fetecau
,
C.
, and
Pop
,
I.
,
2015
, “
Slip Effects on the Unsteady Radiative MHD Free Convection Flow Over a Moving Plate With Mass Diffusion and Heat Source
,”
Eur. Phys. J. Plus
,
130
(
1
), p.
6
.10.1140/epjp/i2015-15006-8
16.
Kudenatti
,
R. B.
, and
Jyothi
,
B.
,
2019
, “
Two-Dimensional Boundary-Layer Flow and Heat Transfer Over a Wedge: Numerical and Asymptotic Solutions
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
66
73
.10.1016/j.tsep.2019.03.006
17.
Kudenatti
,
R. B.
, and
Gogate S
,
S. P.
,
2020
, “
Two Phase Microscopic Heat Transfer Model for Three-Dimensional Stagnation Boundary-Layer Flow in a Porous Medium
,”
ASME J. Heat Transfer
,
142
(
2
), p.
022701
.10.1115/1.4045412
18.
Wang
,
C. Y.
, and
Chang
,
C. C.
,
2019
, “
New Closed-Form Thermal Boundary Layer Solutions in Shear Flow With Power-Law Velocity
,”
ASME J. Heat Transfer
,
141
(
6
), p.
064502
.10.1115/1.4042489
19.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner–Skan Equation for a Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
20.
Sachdev
,
P. L.
,
Kudenatti
,
R. B.
, and
Bujurke
,
N. M.
,
2007
, “
Exact Analytic Solution of a Boundary Value Problem for the Falkner–Skan Equation
,”
Stud. Appl. Math.
,
120
(
1
), pp.
1
16
.10.1111/j.1467-9590.2007.00386.x
21.
Ishak
,
A.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2008
, “
Dual Solutions in Mixed Convection Flow Near a Stagnation Point on a Vertical Porous Plate
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
417
422
.10.1016/j.ijthermalsci.2007.03.005
22.
Turkyilmazoglu
,
M.
,
2012
, “
Multiple Analytic Solutions of Heat and Mass Transfer of Magnetohydrodynamic Slip Flow for Two Types of Viscoelastic Fluids Over a Stretching Surface
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071701
.10.1115/1.4006165
23.
Zheng
,
L.
,
Niu
,
J.
,
Zhang
,
X.
, and
Ma
,
L.
,
2012
, “
Dual Solutions for Flow and Radiative Heat Transfer of a Micropolar Fluid Over Stretching/Shrinking Sheet
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7577
7586
.10.1016/j.ijheatmasstransfer.2012.07.067
24.
Shu
,
J.-J.
,
Wang
,
Q.-W.
, and
Pop
,
I.
,
2017
, “
Entropy Generation Due to Heat and Mass Transfer in a Flow of Dissipative Elastic Fluid Through a Porous Medium
,”
ASME J. Heat Transfer
,
139
(
10
), p.
102501
.10.1115/1.4036727
25.
Roşca
,
N. C.
,
Roşca
,
A. V.
, and
Pop
,
I.
,
2019
, “
Unsteady Separated Stagnation-Point Flow and Heat Transfer Past a Stretching/Shrinking Sheet in a Copper-Water Nanofluid
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
8
), pp.
2588
2605
.10.1108/HFF-09-2018-0527
26.
Rana
,
P.
,
Shukla
,
N.
,
Gupta
,
Y.
, and
Pop
,
I.
,
2019
, “
Homotopy Analysis Method for Predicting Multiple Solutions in the Channel Flow With Stability Analysis
,”
Commun. Nonlinear Sci. Numer. Simul.
,
66
, pp.
183
193
.10.1016/j.cnsns.2018.06.012
27.
Parand
,
K.
,
Shahini
,
M.
, and
Dehghan
,
M.
,
2010
, “
Solution of a Laminar Boundary Layer Flow Via a Numerical Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
2
), pp.
360
367
.10.1016/j.cnsns.2009.04.007
28.
Turkyilmazoglu
,
M.
,
2010
, “
Unsteady MHD Flow With Variable Viscosity: Applications of Spectral Scheme
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
563
570
.10.1016/j.ijthermalsci.2009.10.007
29.
Sobamowo
,
M. G.
,
Jayesimi
,
L. O.
, and
Waheed
,
M. A.
,
2019
, “
Chebyshev Spectral Collocation Method for Flow and Heat Transfer in Magnetohydrodynamic Dissipative Carreau Nanofluid Over a Stretching Sheet With Internal Heat Generation
,”
AUT J. Mech. Eng.
,
3
(
1
), pp.
3
14
.10.14529/jcem190101
30.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, New Delhi, India.
31.
Sharma
,
R.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Stability Analysis of Magnetohydrodynamic Stagnation-Point Flow Toward a Stretching/Shrinking Sheet
,”
Comput. Fluids
,
102
, pp.
94
98
.10.1016/j.compfluid.2014.06.022
32.
Kudenatti
,
R. B.
,
Kirsur
,
S. R.
,
Achala
,
L. N.
, and
Bujurke
,
N. M.
,
2013
, “
Exact Solution of Two-Dimensional MHD Boundary Layer Flow Over a Semi-Infinite Flat Plate
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
5
), pp.
1151
1161
.10.1016/j.cnsns.2012.09.029
33.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
, “
Handbook of Mathematical Functions (Ninth Corrected Printing)
,” National Bureau of Standards, Dover Publications, Mineola, NY.
34.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
, 2nd ed.,
Dover Publication
,
Mineola, NY
.
35.
Sezer
,
M.
, and
Kaynak
,
M.
,
1996
, “
Chebyshev Polynomial Solutions of Linear Differential Equations
,”
Int. J. Math. Educ. Sci. Technol.
,
27
(
4
), pp.
607
618
.10.1080/0020739960270414
36.
Akyüz-Daşcıoğlu
,
A.
, and
Çerdi˙k-Yaslan
,
H.
,
2011
, “
The Solution of High-Order Nonlinear Ordinary Differential Equations by Chebyshev Series
,”
Appl. Math. Comput.
,
217
(
12
), pp.
5658
5666
.10.1016/j.amc.2010.12.044
You do not currently have access to this content.