Abstract

It has been shown that the performance of a thermal radiative device, such as a thermophotovoltaic (TPV) and an electroluminescent (EL) refrigerator, can be significantly enhanced when the vacuum gap between a reservoir and a semiconductor diode becomes nanoscale. Recently, several studies have reported the integration of a TPV and a light emitting diode (LED) in one near-field thermal radiative device to improve the operation efficiency. However, surface polaritons were hardly exploited in previous research because bare semiconductor diodes were used. In this paper, we propose a TPV-LED integrated near-field EL refrigeration system consisting of two graphene-semiconductor Schottky diodes. A substantial refrigeration rate (101.9 kW/m2) is achieved owing to the coupling of surface plasmon-phonon polaritons excited by a symmetric configuration of graphene-polar materials. Moreover, the cooling coefficient of performance (COP) of the system can be enhanced up to 2.65 times by recycling the electrical power generated in the TPV cell. The cooling performance is further investigated in relation to design parameters, namely the doping concentration of Si and insulator thickness.

References

1.
Tervo
,
E.
,
Bagherisereshki
,
E.
, and
Zhang
,
Z.
,
2018
, “
Near-Field Radiative Thermoelectric Energy Converters: A Review
,”
Front. Energy
,
12
(
1
), pp.
5
21
.10.1007/s11708-017-0517-z
2.
Lin
,
C.
,
Wang
,
B.
,
Teo
,
K. H.
, and
Zhang
,
Z.
,
2018
, “
A Coherent Description of Thermal Radiative Devices and Its Application on the Near-Field Negative Electroluminescent Cooling
,”
Energy
,
147
, pp.
177
186
.10.1016/j.energy.2018.01.005
3.
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2006
, “
Near-Field Thermophotovoltaic Energy Conversion
,”
J. Appl. Phys.
,
100
(
6
), p.
063704
.10.1063/1.2234560
4.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
,
2008
, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
305
316
.10.1016/j.jqsrt.2007.08.022
5.
Francoeur
,
M.
,
Vaillon
,
R.
, and
Mengüç
,
M. P.
,
2011
, “
Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators
,”
IEEE Trans. Energy Conv.
,
26
(
2
), pp.
686
698
.10.1109/TEC.2011.2118212
6.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion
,”
Sci. Rep.
,
3
, p.
1383
.10.1038/srep01383
7.
Svetovoy
,
V. B.
, and
Palasantzas
,
G.
,
2014
, “
Graphene-on-Silicon Near-Field Thermophotovoltaic Cell
,”
Phys. Rev. Appl.
,
2
(
3
), p.
034006
.10.1103/PhysRevApplied.2.034006
8.
Lim
,
M.
,
Jin
,
S.
,
Lee
,
S. S.
, and
Lee
,
B. J.
,
2015
, “
Graphene-Assisted Si-InSb Thermophotovoltaic System for Low Temperature Applications
,”
Opt. Express
,
23
(
7
), pp.
A240
A253
.10.1364/OE.23.00A240
9.
Chen
,
K.
,
Santhanam
,
P.
,
Sandhu
,
S.
,
Zhu
,
L.
, and
Fan
,
S.
,
2015
, “
Heat-Flux Control and Solid-State Cooling by Regulating Chemical Potential of Photons in Near-Field Electromagnetic Heat Transfer
,”
Phys. Rev. B
,
91
(
13
), p.
134301
.10.1103/PhysRevB.91.134301
10.
Liu
,
X.
, and
Zhang
,
Z. M.
,
2016
, “
High-Performance Electroluminescent Refrigeration Enabled by Photon Tunneling
,”
Nano Energy
,
26
, pp.
353
359
.10.1016/j.nanoen.2016.05.049
11.
Chen
,
K.
,
Santhanam
,
P.
, and
Fan
,
S.
,
2016
, “
Near-Field Enhanced Negative Luminescent Refrigeration
,”
Phys. Rev. Appl.
,
6
(
2
), p.
024014
.10.1103/PhysRevApplied.6.024014
12.
Chen
,
K.
,
Xiao
,
T. P.
,
Santhanam
,
P.
,
Yablonovitch
,
E.
, and
Fan
,
S.
,
2017
, “
High-Performance Near-Field Electroluminescent Refrigeration Device Consisting of a GaAs Light Emitting Diode and a Si Photovoltaic Cell
,”
J. Appl. Phys.
,
122
(
14
), p.
143104
.10.1063/1.5007712
13.
DeSutter
,
J.
,
Vaillon
,
R.
, and
Francoeur
,
M.
,
2017
, “
External Luminescence and Photon Recycling in Near-Field Thermophotovoltaics
,”
Phys. Rev. Appl.
,
8
(
1
), p.
014030
.10.1103/PhysRevApplied.8.014030
14.
Yang
,
Y.
,
Chang
,
J.-Y.
,
Sabbaghi
,
P.
, and
Wang
,
L.
,
2017
, “
Performance Analysis of a Near-Field Thermophotovoltaic Device With a Metallodielectric Selective Emitter and Electrical Contacts for the Photovoltaic Cell
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052701
.10.1115/1.4034839
15.
Zhao
,
B.
,
Santhanam
,
P.
,
Chen
,
K.
,
Buddhiraju
,
S.
, and
Fan
,
S.
,
2018
, “
Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery
,”
Nano Lett.
,
18
(
8
), pp.
5224
5230
.10.1021/acs.nanolett.8b02184
16.
Lim
,
M.
,
Song
,
J.
,
Kim
,
J.
,
Lee
,
S. S.
,
Lee
,
I.
, and
Lee
,
B. J.
,
2018
, “
Optimization of a Near-Field Thermophotovoltaic System Operating at Low Temperature and Large Vacuum Gap
,”
J. Quant. Spectrosc. Radiat. Transfer
,
210
, pp.
35
43
.10.1016/j.jqsrt.2018.02.006
17.
Song
,
J.
,
Lim
,
M.
,
Lee
,
S. S.
, and
Lee
,
B. J.
,
2019
, “
Analysis of Photocurrent Generation Within a Schottky-Junction-Based Near-Field Thermophotovoltaic System
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044040
.10.1103/PhysRevApplied.11.044040
18.
Liao
,
T.
, and
Wang
,
Z.-Y.
,
2019
, “
Graphene/n-Type Silicon Schottky Near-Field Thermophotovoltaic Cell
,”
J. Photonics Energy
,
9
(
1
), p.
1
.10.1117/1.JPE.9.014502
19.
Vaillon
,
R.
,
Pérez
,
J.-P.
,
Lucchesi
,
C.
,
Cakiroglu
,
D.
,
Chapuis
,
P.-O.
,
Taliercio
,
T.
, and
Tournié
,
E.
,
2019
, “
Micron-Sized Liquid Nitrogen-Cooled Indium Antimonide Photovoltaic Cell for Near-Field Thermophotovoltaics
,”
Opt. Express
,
27
(
4
), pp.
A11
A24
.10.1364/OE.27.000A11
20.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGrawHill
, New York.
21.
Basu
,
S.
,
2016
,
Near-Field Radiative Heat Transfer Across Nanometer Vacuum Gaps: Fundamentals and Applications
,
William Andrew
, Norwich, CT.
22.
Fiorino
,
A.
,
Zhu
,
L.
,
Thompson
,
D.
,
Mittapally
,
R.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2018
, “
Nanogap Near-Field Thermophotovoltaics
,”
Nat. Nanotech.
,
13
(
9
), pp.
806
811
.10.1038/s41565-018-0172-5
23.
Vongsoasup
,
N.
, and
Hanamura
,
K.
,
2018
, “
Effects of Near-Field Radiation and Hyperbolic Modes on a TPV System
,”
Therm. Sci. Eng.
,
26
(
1
), pp.
29
38
.10.11368/tse.26.29
24.
Zhu
,
L.
,
Fiorino
,
A.
,
Thompson
,
D.
,
Mittapally
,
R.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2019
, “
Near-Field Photonic Cooling Through Control of the Chemical Potential of Photons
,”
Nature
,
566
(
7743
), pp.
239
244
.10.1038/s41586-019-0918-8
25.
Inoue
,
T.
,
Koyama
,
T.
,
Kang
,
D. D.
,
Ikeda
,
K.
,
Asano
,
T.
, and
Noda
,
S.
,
2019
, “
One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell
,”
Nano Lett.
,
19
(
6
), pp.
3948
3952
.10.1021/acs.nanolett.9b01234
26.
St-Gelais
,
R.
,
Bhatt
,
G. R.
,
Zhu
,
L.
,
Fan
,
S.
, and
Lipson
,
M.
,
2017
, “
Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion
,”
ACS Nano
,
11
(
3
), pp.
3001
3009
.10.1021/acsnano.6b08597
27.
Rana
,
F.
,
2011
, “
Graphene Optoelectronics: Plasmons Get Tuned Up
,”
Nat. Nanotech.
,
6
(
10
), pp.
611
612
.10.1038/nnano.2011.170
28.
Di Bartolomeo
,
A.
,
2016
, “
Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction
,”
Phys. Rep.
,
606
, pp.
1
58
.10.1016/j.physrep.2015.10.003
29.
Xu
,
J.
,
Hu
,
J.
,
Wang
,
R.
,
Li
,
Q.
,
Li
,
W.
,
Guo
,
Y.
,
Liu
,
F.
,
Ullah
,
Z.
,
Wen
,
L.
, and
Liu
,
L.
,
2017
, “
Ultra-Broadband Graphene-InSb Heterojunction Photodetector
,”
Appl. Phys. Lett.
,
111
(
5
), p.
051106
.10.1063/1.4997327
30.
Yang
,
J.
,
Du
,
W.
,
Su
,
Y.
,
Fu
,
Y.
,
Gong
,
S.
,
He
,
S.
, and
Ma
,
Y.
,
2018
, “
Observing of the Super-Planckian Near-Field Thermal Radiation Between Graphene Sheets
,”
Nat. Commun.
,
9
(
1
), p.
4033
.10.1038/s41467-018-06163-8
31.
Card
,
H. C.
, and
Rhoderick
,
E. H.
,
1971
, “
Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes
,”
J. Phys. D
,
4
(
10
), pp.
1589
1601
.10.1088/0022-3727/4/10/319
32.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2006
,
Physics of Semiconductor Devices
, 3rd ed.,
Wiley
,
Chichester, UK
.
33.
Miyata
,
K.
,
Dreifus
,
D.
, and
Kobashi
,
K.
,
1992
, “
Metal-Intrinsic Semiconductor-Semiconductor Structures Using Polycrystalline Diamond Films
,”
Appl. Phys. Lett.
,
60
(
4
), pp.
480
482
.10.1063/1.106642
34.
González-Cuevas
,
J. A.
,
Refaat
,
T. F.
,
Abedin
,
M. N.
, and
Elsayed-Ali
,
H. E.
,
2006
, “
Modeling of the Temperature-Dependent Spectral Response of In1-x Gax Sb Infrared Photodetectors
,”
Opt. Eng.
,
45
(
4
), p.
044001
.10.1117/1.2192772
35.
Shi
,
Y.
,
Kim
,
K. K.
,
Reina
,
A.
,
Hofmann
,
M.
,
Li
,
L.-J.
, and
Kong
,
J.
,
2010
, “
Work Function Engineering of Graphene Electrode Via Chemical Doping
,”
ACS Nano
,
4
(
5
), pp.
2689
2694
.10.1021/nn1005478
36.
Wurfel
,
P.
,
1982
, “
The Chemical Potential of Radiation
,”
J. Phys. C
,
15
(
18
), pp.
3967
3985
.10.1088/0022-3719/15/18/012
37.
Scales
,
C.
, and
Berini
,
P.
,
2010
, “
Thin-Film Schottky Barrier Photodetector Models
,”
IEEE J. Quantum Electron.
,
46
(
5
), pp.
633
643
.10.1109/JQE.2010.2046720
38.
Polder
,
D.
, and
Van Hove
,
M.
,
1971
, “
Theory of Radiative Heat Transfer Between Closely Spaced Bodies
,”
Phys. Rev. B
,
4
(
10
), pp.
3303
3314
.10.1103/PhysRevB.4.3303
39.
Rytov
,
S. M.
,
Kratsov
,
Y. A.
, and
Tatarskii
,
V. I.
,
1989
,
Principles of Statistical Radiophysics
,
Springer
, Berlin.
40.
Francoeur
,
M.
,
Mengüç
,
M. P.
, and
Vaillon
,
R.
,
2009
, “
Solution of Near-Field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green's Functions and the Scattering Matrix Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
18
), pp.
2002
2018
.10.1016/j.jqsrt.2009.05.010
41.
Rakić
,
A. D.
,
Djurišić
,
A. B.
,
Elazar
,
J. M.
, and
Majewski
,
M. L.
,
1998
, “
Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices
,”
Appl. Opt.
,
37
(
22
), pp.
5271
5283
.10.1364/AO.37.005271
42.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
,
2009
, “
Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023301
.10.1115/1.4000171
43.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
, Vol.
1
,
Academic Press
,
Cambridge
, San Diego, CA.
44.
Jablan
,
M.
,
Buljan
,
H.
, and
Soljačić
,
M.
,
2009
, “
Plasmonics in Graphene at Infrared Frequencies
,”
Phys. Rev. B
,
80
(
24
), p.
245435
.10.1103/PhysRevB.80.245435
45.
Lim
,
M.
,
Lee
,
S. S.
, and
Lee
,
B. J.
,
2013
, “
Near-Field Thermal Radiation Between Graphene-Covered Doped Silicon Plates
,”
Opt. Express
,
21
(
19
), pp.
22173
22185
.10.1364/OE.21.022173
46.
Guo
,
B.
,
Fang
,
L.
,
Zhang
,
B.
, and
Gong
,
J. R.
,
2011
, “
Graphene Doping: A Review
,”
Insciences J.
,
1
(
2
), pp.
80
89
.10.5640/insc.010280
47.
Wang
,
X.
,
Li
,
X.
,
Zhang
,
L.
,
Yoon
,
Y.
,
Weber
,
P. K.
,
Wang
,
H.
,
Guo
,
J.
, and
Dai
,
H.
,
2009
, “
N-Doping of Graphene Through Electrothermal Reactions With Ammonia
,”
Science
,
324
(
5928
), pp.
768
771
.10.1126/science.1170335
48.
Coletti
,
C.
,
Riedl
,
C.
,
Lee
,
D. S.
,
Krauss
,
B.
,
Patthey
,
L.
,
von Klitzing
,
K.
,
Smet
,
J. H.
, and
Starke
,
U.
,
2010
, “
Charge Neutrality and Band-Gap Tuning of Epitaxial Graphene on SiC by Molecular Doping
,”
Phys. Rev. B
,
81
(
23
), p.
235401
.10.1103/PhysRevB.81.235401
49.
Thomas
,
N. H.
,
Sherrott
,
M. C.
,
Broulliet
,
J.
,
Atwater
,
H. A.
, and
Minnich
,
A. J.
,
2019
, “
Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures
,”
Nano Lett.
,
19
(
6
), pp.
3898
3904
.10.1021/acs.nanolett.9b01086
50.
Donoval
,
D.
,
Barus
,
M.
, and
Zdimal
,
M.
,
1991
, “
Analysis of I–V Measurements on PtSi-Si Schottky Structures in a Wide Temperature Range
,”
Solid-State Electron.
,
34
(
12
), pp.
1365
1373
.10.1016/0038-1101(91)90031-S
51.
Levinshtein
,
M.
,
Rumyantsev
,
M.
, and
Shur
,
M.
,
1996
,
Handbook Series on Semiconductor Parameters
(Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb), Vol.
1
,
World Scientific
, Singapore.
52.
Liang
,
S.-J.
, and
Ang
,
L.
,
2015
, “
Electron Thermionic Emission From Graphene and a Thermionic Energy Converter
,”
Phys. Rev. Appl.
,
3
(
1
), p.
014002
.10.1103/PhysRevApplied.3.014002
53.
Harrison
,
J.
, and
Hauser
,
J.
,
1976
, “
Theoretical Calculations of Electron Mobility in Ternary III-V Compounds
,”
J. Appl. Phys.
,
47
(
1
), pp.
292
300
.10.1063/1.322315
54.
Huang
,
M.
,
Chang
,
Y.
,
Chang
,
C.
,
Lin
,
T.
,
Kwo
,
J.
,
Wu
,
T.
, and
Hong
,
M.
,
2006
, “
Energy-Band Parameters of Atomic-Layer-Deposition Al2O3/InGaAs Heterostructure
,”
Appl. Phys. Lett.
,
89
(
1
), p.
012903
.10.1063/1.2218826
55.
Kaufmann
,
I.
,
Pick
,
A.
,
Pereira
,
M.
, and
Boudinov
,
H.
,
2017
, “
Metal-Insulator-SiC Schottky Structures Using HfO2 and TiO2 Dielectrics
,”
Thin Solid Films
,
621
, pp.
184
187
.10.1016/j.tsf.2016.11.053
56.
Hwang
,
C.
,
Siegel
,
D. A.
,
Mo
,
S.-K.
,
Regan
,
W.
,
Ismach
,
A.
,
Zhang
,
Y.
,
Zettl
,
A.
, and
Lanzara
,
A.
,
2012
, “
Fermi Velocity Engineering in Graphene by Substrate Modification
,”
Sci. Rep.
,
2
, p.
590
.10.1038/srep00590
57.
Muller
,
R. S.
,
Kamins
,
T. I.
,
Chan
,
M.
, and
Ko
,
P. K.
,
1986
, “
Device Electronics for Integrated Circuits
,” John Wiley & Sons, New York.
58.
Liu
,
X.
, and
Zhang
,
Z.
,
2014
, “
Graphene-Assisted Near-Field Radiative Heat Transfer Between Corrugated Polar Materials
,”
Appl. Phys. Lett.
,
104
(
25
), p.
251911
.10.1063/1.4885396
59.
Zhao
,
B.
, and
Zhang
,
Z.
,
2017
, “
Enhanced Photon Tunneling by Surface Plasmon–Phonon Polaritons in Graphene/hBN Heterostructures
,”
ASME J. Heat Transfer
,
139
(
2
), p.
022701
.10.1115/1.4034793
60.
Pulfrey
,
D. L.
,
1978
, “
MIS Solar Cells: A Review
,”
IEEE Trans.
,
25
(
11
), pp.
1308
1317
.10.1109/T-ED.1978.19271
61.
Godfrey
,
R. B.
, and
Green
,
M. A.
,
1978
, “
A 15% Efficient Silicon MIS Solar Cell
,”
Appl. Phys. Lett.
,
33
(
7
), pp.
637
639
.10.1063/1.90446
You do not currently have access to this content.