Abstract

Gradient particle size anode has shown great potential in improving the electrical performance of anode-supported solid oxide fuel cells (SOFCs). In this study, a 3D comprehensive model is established to study the effect of various gradient particle size distribution on the cell electrical performance for the anode microstructure optimization. The effect of homogeneous particle size on the cell performance is studied first. The maximum current density of homogeneous anode SOFC is obtained for the comparison with the electrical performance of gradient anode SOFC. Then the effect of various gradient particle size distribution on the cell molar fraction, polarization losses, and electronic current density distribution is analyzed and discussed in detail. Results show that increasing the particle diameter gradient can effectively reduce the anodic concentration overpotential. Decreasing the particle diameter of anode functional layer 2 is beneficial for reducing the activation and ohmic overpotentials. On these bases, the comprehensive electrical performance of SOFCs with gradient particle size anode and homogeneous anode is compared to highlight the optimal gradient particle diameter distribution. In the studied cases of this work, the gradient particle diameter of 0.7 μm, 0.4 μm, and 0.1 μm at anode support layer (ASL), anode functional layer 1, and anode functional layer 2 (case 3) is the optimal particle size distribution.

References

1.
Fernandes
,
M. D.
,
Andrade
,
S. T.
,
de
,
P.
,
Bistritzki
,
V. N.
,
Fonseca
,
R. M.
,
Zacarias
,
L. G.
,
Gonçalves
,
H. N. C.
,
Castro
,
A. F.
,
de
,
Domingues
,
R. Z.
, and
Matencio
,
T.
,
2018
, “
SOFC-APU Systems for Aircraft: A Review
,”
Int. J. Hydrogen Energy
,
43
(
33
), pp.
16311
16333
.10.1016/j.ijhydene.2018.07.004
2.
Abdalla
,
A. M.
,
Hossain
,
S.
,
Azad
,
A. T.
,
Petra
,
P. M. I.
,
Begum
,
F.
,
Eriksson
,
S. G.
, and
Azad
,
A. K.
,
2018
, “
Nanomaterials for Solid Oxide Fuel Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
353
368
.10.1016/j.rser.2017.09.046
3.
Yuan
,
J. L.
, and
Sundén
,
B.
,
2005
, “
Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and Performance
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1380
1390
.10.1115/1.2098847
4.
Chen
,
Q. Y.
,
Wang
,
Q. W.
,
Zhang
,
J.
, and
Yuan
,
J. L.
,
2011
, “
Effect of Bi-Layer Interconnector Design on Mass Transfer Performance in Porous Anode of Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1994
2003
.10.1016/j.ijheatmasstransfer.2011.01.003
5.
Mahmud
,
L. S.
,
Muchtar
,
A.
, and
Somalu
,
M. R.
,
2017
, “
Challenges in Fabricating Planar Solid Oxide Fuel Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
105
116
.10.1016/j.rser.2017.01.019
6.
Shaikh
,
S. P. S.
,
Muchtar
,
A.
, and
Somalu
,
M. R.
,
2015
, “
A Review on the Selection of Anode Materials for Solid-Oxide Fuel Cells
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
1
8
.10.1016/j.rser.2015.05.069
7.
Irshad
,
M.
,
Siraj
,
K.
,
Raza
,
R.
,
Ali
,
A.
,
Tiwari
,
P.
,
Zhu
,
B.
,
Rafique
,
A.
,
Ali
,
A.
,
Ullah
,
M. K.
, and
Usman
,
A.
,
2016
, “
A Brief Description of High Temperature Solid Oxide Fuel Cell's Operation, Materials, Design, Fabrication Technologies and Performance
,”
Appl. Sci.
,
6
(
3
), p.
75
.10.3390/app6030075
8.
Lee
,
S.
,
Kim
,
H.
,
Yoon
,
K. J.
,
Son
,
J. W.
,
Lee
,
J. H.
,
Kim
,
B. K.
,
Choi
,
W.
, and
Hong
,
J.
,
2016
, “
The Effect of Fuel Utilization on Heat and Mass Transfer Within Solid Oxide Fuel Cells Examined by Three-Dimensional Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
97
, pp.
77
93
.10.1016/j.ijheatmasstransfer.2016.02.001
9.
Jung
,
H. Y.
,
Kim
,
W. S.
,
Choi
,
S. H.
,
Kim
,
H. C.
,
Kim
,
J.
,
Lee
,
H. W.
, and
Lee
,
J. H.
,
2006
, “
Effect of Cathode Current-Collecting Layer on Unit-Cell Performance of Anode-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
155
(
2
), pp.
145
151
.10.1016/j.jpowsour.2005.05.015
10.
Richards
,
A. E.
,
McNeeley
,
M. G.
,
Kee
,
R. J.
, and
Sullivan
,
N. P.
,
2011
, “
Gas Transport and Internal-Reforming Chemistry in Ni-YSZ and Ferritic-Steel Supports for Solid-Oxide Fuel Cells
,”
J. Power Sources
,
196
(
23
), pp.
10010
10018
.10.1016/j.jpowsour.2011.07.086
11.
Müller
,
A. C.
,
Herbstritt
,
D.
, and
Ivers-Tiffée
,
E.
,
2002
, “
Development of a Multilayer Anode for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
152–153
, pp.
537
542
.10.1016/S0167-2738(02)00357-0
12.
Kong
,
J. R.
,
Sun
,
K. N.
,
Zhou
,
D. R.
,
Zhang
,
N. Q.
,
Mu
,
J.
, and
Qiao
,
J. S.
,
2007
, “
Ni-YSZ Gradient Anodes for Anode-Supported SOFCs
,”
J. Power Sources
,
166
(
2
), pp.
337
342
.10.1016/j.jpowsour.2006.12.042
13.
Jin
,
C.
,
Mao
,
Y. C.
,
Zhang
,
N. Q.
, and
Sun
,
K. N.
,
2015
, “
Fabrication and Characterization of Ni-SSZ Gradient Anodes/SSZ Electrolyte for Anode-Supported SOFCs by Tape Casting and Co-Sintering Technique
,”
Int. J. Hydrogen Energy
,
40
(
26
), pp.
8433
8441
.10.1016/j.ijhydene.2015.04.088
14.
Sukeshini
,
M.
,
Meisenkothen
,
F.
,
Gardner
,
P.
, and
Reitz
,
T. L.
,
2013
, “
Aerosol Jet® Printing of Functionally Graded SOFC Anode Interlayer and Microstructural Investigation by Low Voltage Scanning Electron Microscopy
,”
J. Power Sources
,
224
, pp.
295
303
.10.1016/j.jpowsour.2012.09.094
15.
Lee
,
S.
,
Park
,
I.
,
Lee
,
H.
, and
Shin
,
D.
,
2014
, “
Continuously Gradient Anode Functional Layer for BCZY Based Proton-Conducting Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14342
14348
.10.1016/j.ijhydene.2014.03.135
16.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Micro-Scale Modelling of Solid Oxide Fuel Cells With Micro-Structurally Graded Electrodes
,”
J. Power Sources
,
168
(
2
), pp.
369
378
.10.1016/j.jpowsour.2007.03.005
17.
Lee
,
S. J.
,
Jung
,
C. Y.
,
Shim
,
K. B.
, and
Yi
,
S. C.
,
2012
, “
Microstructural Analysis of the Functionally Graded Electrodes in Solid Oxide Fuel Cells
,”
J. Ceram. Process. Res.
,
13
(
6
), pp.
810
815
.10.1016/j.ceramint.2011.07.031
18.
Shi
,
J. X.
, and
Xue
,
X. J.
,
2010
, “
CFD Analysis of a Symmetrical Planar SOFC With Heterogeneous Electrode Properties
,”
Electrochim. Acta
,
55
(
18
), pp.
5263
5273
.10.1016/j.electacta.2010.04.060
19.
Wang
,
C.
,
2015
, “
Microscale Correlations Adoption in Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
12
, p.
041006
.10.1115/1.4031153
20.
Wang
,
C.
,
2016
, “
A Computational Analysis of Functionally Graded Anode in Solid Oxide Fuel Cell by Involving the Correlations of Microstructural Parameters
,”
Energies
,
9
(
6
), p.
408
.10.3390/en9060408
21.
Fu
,
P.
,
Yang
,
J.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2018
, “
Numerical Study on Electrical Performance of Solid Oxide Fuel Cell With Gradient Particle Size Anode
,”
J. Eng. Thermophys.
,
39
(
8
), pp.
1803
1808
.http://en.cnki.com.cn/Article_en/CJFDTotal-GCRB201802023.htm
22.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
,
2010
, “
CFD-Based Design of Microtubular Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062801
.10.1115/1.4000709
23.
Shi
,
Y. X.
,
Cai
,
N. S.
, and
Li
,
C.
,
2007
, “
Numerical Modeling of an Anode-Supported SOFC Button Cell Considering Anodic Surface Diffusion
,”
J. Power Sources
,
164
(
2
), pp.
639
648
.10.1016/j.jpowsour.2006.10.091
24.
Tao
,
W. Q.
,
Min
,
C. H.
,
Liu
,
X. L.
,
He
,
Y. L.
,
Yin
,
B. H.
, and
Jiang
,
W.
,
2006
, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation—Part I: Current Status of Modeling Research and Model Development
,”
J. Power Sources
,
160
(
1
), pp.
359
573
.10.1016/j.jpowsour.2006.01.078
25.
Tao
,
W. Q.
,
2001
,
Numerical Heat Transfer
, 2nd ed.,
Xi'an Jiaotong University Press
,
Xi'an, China
.
26.
Todd
,
B.
, and
Young
,
J. B.
,
2002
, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
,
110
(
1
), pp.
186
200
.10.1016/S0378-7753(02)00277-X
27.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, 4th ed.,
Springer Science & Business Media
,
New York
.
28.
Andersson
,
M.
,
Paradis
,
H.
,
Yuan
,
J. L.
, and
Sundén
,
B.
,
2011
, “
Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
3
), p.
031013
.10.1115/1.4002618
29.
Veldsink
,
J. W.
,
Van Damme
,
R. M.
,
Versteeg
,
G. F.
, and
Van Swaaij
,
W. P. M.
,
1995
, “
The Use of the Dusty-Gas Model for the Description of Mass Transport With Chemical Reaction in Porous Media
,”
Chem. Eng. J.
,
57
(
2
), pp.
115
126
.10.1016/0923-0467(94)02929-6
30.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
,
1966
, “
A New Method for Prediction Coefficients of Binary Gas-Phase Diffusion
,”
Ind. Eng. Chem. Res.
,
58
(
5
), pp.
18
27
.10.1021/ie50677a007
31.
Jeon
,
D. H.
,
2009
, “
A Comprehensive CFD Model of Anode-Supported Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
54
(
10
), pp.
2727
2736
.10.1016/j.electacta.2008.11.048
32.
Bagotsky
,
V. S.
,
2005
,
Fundamentals of Electrochemistry
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
33.
Ho
,
T. X.
,
Kosinski
,
P.
,
Hoffmann
,
A. C.
, and
Vik
,
A.
,
2008
, “
Numerical Modeling of Solid Oxide Fuel Cells
,”
Chem. Eng. Sci.
,
63
(
21
), pp.
5356
5365
.10.1016/j.ces.2008.07.021
34.
Ho
,
T. X.
,
Kosinski
,
P.
,
Hoffmann
,
A. C.
, and
Vik
,
A.
,
2009
, “
Numerical Analysis of a Planar Anode-Supported SOFC With Composite Electrodes
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3488
3499
.10.1016/j.ijhydene.2009.02.016
35.
Andreassi
,
L.
,
Rubeo
,
G.
,
Ubertini
,
S.
,
Lunghi
,
P.
, and
Bove
,
R.
,
2007
, “
Experimental and Numerical Analysis of a Radial Flow Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4559
4574
.10.1016/j.ijhydene.2007.07.047
36.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
,
1998
, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
,
43
(
3–4
), pp.
375
394
.10.1016/S0013-4686(97)00063-7
37.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
,
2009
, “
A General Electrolyte-Electrode-Assembly Model for the Performance Characteristics of Planar Anode-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
189
(
2
), pp.
916
928
.10.1016/j.jpowsour.2008.12.121
38.
Zeng
,
M.
,
Yuan
,
J. L.
,
Zhang
,
J.
,
Sundén
,
B.
, and
Wang
,
Q. W.
,
2012
, “
Investigation of Thermal Radiation Effects on Solid Oxide Fuel Cell Performance by a Comprehensive Model
,”
J. Power Sources
,
206
, pp.
185
196
.10.1016/j.jpowsour.2012.01.130
You do not currently have access to this content.