Abstract

An experimental study of bubble growth from submerged orifice plates in pools of water is carried out to scale and correlate the effects of surface wettability and orifice diameter D0 on ebullience. Measurements of bubble growth on surfaces with nine different contact angles (38 deg ≤ θ ≤ 128 deg) and varying air flow rates (1–300 ml/min) were made using high speed videography and image processing. In the static or constant-volume regime, below a critical contact angle θc, the bubble base remains attached to the orifice, and the equivalent departure diameter Db is independent of θ. On the other hand, above the critical contact angle, the bubble base spreads on the surface resulting in larger Db. For θ > θc, Db is strongly dependent on θ and increases with it. Using minimum energy method, it is shown that the wettability effects can be scaled and correlated by a modified capillary length, defined as a function of the Laplace length and contact angle. The proposed correlation provides predictions of Db that agree with experimental data of this study as well as those available in the literature to within ±15%. Moreover, for a hydrophobic surface when D0 > twice the modified capillary length, the bubble grows inside the orifice; for a hydrophilic surface, this scales with twice the capillary length, and effect of θ is not seen.

References

1.
Subramani
,
A. A.
,
Manglik
,
M. A.
, and
Jog
,
M. A.
,
2007
, “
Experimental Study of Single-Bubble Dynamics in Isothermal Liquid Pools: Effects of Fluid Properties, Orifice Diameter and Flow Rate
,”
ASME Paper No. IMECE2007-43442
.10.1115/IMECE2007-43442
2.
Gerlach
,
D.
,
Alleborn
,
N.
,
Buwa
,
V.
, and
Durst
,
F.
,
2007
, “
Numerical Simulation of a Periodic Bubble Formation at a Submerged Orifice With Constant Gas Flow Rate
,”
Chem. Eng. Sci.
,
62
(
7
), pp.
2109
2125
.10.1016/j.ces.2006.12.061
3.
Manglik
,
R. M.
,
Jog
,
M. A.
,
Subramani
,
A.
, and
Gatne
,
K.
,
2006
, “
Mili-Scale Visualization of Bubble Growth-Translation and Droplet Impact Dynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
8
), pp.
736
736
.10.1115/1.2221299
4.
Subramani
,
A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2008
, “
Air-Water Ebullience Systems: Visualizing Single Bubble to Wave Instability Signatures
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
8
), p.
080905
.10.1115/1.2937187
5.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2009
, “
Molecular-to-Large-Scale Heat Transfer With Multiphase Interfaces: Current Status and New Directions
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
12
), p.
121001
1.10.1115/1.4000007
6.
Awad
,
M. M.
,
Bejan
,
A.
,
Dhir
,
V. K.
,
Goldstein
,
R. J.
,
Haji-Sheikh
,
A.
,
Howell
,
J. R.
,
Jaluria
,
Y.
,
Lloyd
,
J. R.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Tamma
,
K. K.
, and
Viskanta
,
R.
,
2020
, “
In Memoriam: Professor Ephraim Maurice Sparrow
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
4
), p.
040101
.10.1115/1.4046310
7.
Manoharan
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2015
, “
Experimental Investigation of Surface Wettability Effect on Bubble Growth From Submerged Plate-Orifices
,”
ASME Paper No. IMECE2015-51758
.10.1115/IMECE2015-51758
8.
Manoharan
,
S.
,
Deodhar
,
A.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2019
, “
Computational Modeling of Adiabatic Bubble Growth Dynamics From Submerged Capillary-Tube Orifices in Aqueous Solutions of Surfactants
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p.
052002
.10.1115/1.4042700
9.
Subramani
,
A.
,
Kasimsetty
,
S. K.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2007
, “
Computational and Experimental Characterization of Single Bubble Dynamics in Isothermal Liquid Pools
,”
ASME Paper No. FEDSM2007-37711
.10.1115/FEDSM2007-37711
10.
Kasimsetty
,
S. K.
,
Subramani
,
A.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2007
, “
Theoretical Modeling and Experimental Measurements of Single Bubble Dynamics From a Submerged Orifice in a Liquid Pool
,”
ASME Paper No. HT2007-32088
.10.1115/HT2007-32088
11.
Kulkarni
,
A. A.
, and
Joshi
,
J. B.
,
2005
, “
Bubble Formation and Bubble Rise Velocity in Gas-Liquid Systems: A Review
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
5873
5931
.10.1021/ie049131p
12.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Chung
,
J. N.
,
1997
,
Transport Phenomena With Drops and Bubbles
,
Springer
,
New York
.
13.
McCann
,
D. J.
, and
Prince
,
R. G. H.
,
1971
, “
Regimes of Bubbling at a Submerged Orifice
,”
Chem. Eng. Sci.
,
26
(
10
), pp.
1505
1512
.10.1016/0009-2509(71)86042-6
14.
Zhang
,
L.
, and
Shoji
,
M.
,
2001
, “
Aperiodic Bubble Formation From a Submerged Orifice
,”
Chem. Eng. Sci.
,
56
(
18
), pp.
5371
5381
.10.1016/S0009-2509(01)00241-X
15.
Badam
,
V. K.
,
Buwa
,
V.
, and
Durst
,
F.
,
2008
, “
Experimental Investigations of Regimes of Bubble Formation on Submerged Orifices Under Constant Flow Condition
,”
Can. J. Chem. Eng.
,
85
(
3
), pp.
257
267
.10.1002/cjce.5450850301
16.
Gopal
,
V.
,
2013
, “
Experimental Investigation of Aperiodic Bubbling From Submerged Capillary-Tube Orifices in Liquid Pools
,” M.S. thesis,
University of Cincinnati
,
Cincinnati, OH
.
17.
Datta
,
R. L.
,
Napier
,
D. H.
, and
Newitt
,
D. M.
,
1950
, “
The Properties and Behavior of Gas Bubbles Formed at a Circular Orifice
,”
Trans. IChemE
,
28
, pp.
14
26
.
18.
Benzing
,
R. J.
, and
Myers
,
J. E.
,
1955
, “
Low Frequency Bubble Formation at Horizontal Circular Orifices
,”
Ind. Eng. Chem.
,
47
(
10
), pp.
2087
2090
.10.1021/ie50550a022
19.
van Krevelen
,
D. W.
, and
Hoftijzer
,
P. J.
,
1950
, “
Studies of Gas-Bubble Formation: Calculation of Interfacial Area in Bubble Contractors
,”
Chem. Eng. Prog.
,
46
(
1
), pp.
29
35
.
20.
Coppock
,
P. D.
, and
Meiklejohn
,
G. T.
,
1951
, “
The Behavior of Gas Bubbles in Relation to Mass Transfer
,”
Chem. Eng. Res. Des.
,
29
, pp.
75
86
.
21.
Tadaki
,
T.
, and
Maeda
,
S.
,
1963
, “
The Size of Bubbles From Single Orifices
,”
J. Chem. Eng.
,
27
(
3
), pp.
147
155
.10.1252/kakoronbunshu1953.27.147
22.
Kalaikadal
,
D. S.
, and
Manglik
,
R. M.
,
2012
, “
A Parametric Investigation of Gas Bubble Growth and Pinch-Off Dynamics From Capillary-Tube Orifices in Liquid Pools
,”
Thermal-Fluids & Thermal Processing Laboratory, University of Cincinnati
,
Cincinnati, OH
, Report No. TFTPL-21.
23.
Georgoulas
,
A.
,
Koukouvinis
,
P.
,
Gavaises
,
M.
, and
Marengo
,
M.
,
2015
, “
Numerical Investigation of Quasi-Static Bubble Growth and Detachment From Submerged Orifices in Isothermal Liquid Pools: The Effect of Varying Fluid Properties and Gravity Levels
,”
Int. J. Multiphase Flows
,
74
, pp.
59
78
.10.1016/j.ijmultiphaseflow.2015.04.008
24.
Lesage
,
F. J.
, and
Marois
,
F.
,
2013
, “
Experimental and Numerical Analysis of Quasi-Static Bubble Size and Shape Characteristics at Detachment
,”
Int. J. Heat Mass Transfer
,
64
, pp.
53
69
.10.1016/j.ijheatmasstransfer.2013.04.019
25.
Jani
,
P.
, and
Manglik
,
R. M.
,
2021
, “
Experimental Investigation of Influence of Liquid Physicochemical Properties on Adiabatic Bubble Growth From Submerged Capillary Orifice Under Steady Flow Rate Conditions
,”
Thermal-Fluids & Thermal Processing Laboratory, University of Cincinnati
,
Cincinnati, OH
, Report No. TFTPL-28.
26.
Gaddis
,
E. S.
, and
Vogelpohl
,
A.
,
1986
, “
Bubble Formation in Quiescent Liquids Under Constant Flow Conditions
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
97
105
.10.1016/0009-2509(86)85202-2
27.
Jamialahmadi
,
M.
,
Zehtaban
,
M. R.
,
Muller-Steinhagen
,
H.
,
Sarrafi
,
A.
, and
Smith
,
J. M.
,
2001
, “
Study of Bubble Formation Under Constant Flow Conditions
,”
Chem. Eng. Res. Des.
,
79
(
5
), pp.
523
532
.10.1205/02638760152424299
28.
Di Bari
,
S.
, and
Robinson
,
A. J.
,
2013
, “
Experimental Study of Gas Injected Bubble Growth From Submerged Orifices
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
124
137
.10.1016/j.expthermflusci.2012.06.005
29.
Pinczewski
,
W. V.
,
1981
, “
The Formation and Growth of Bubbles at a Submerged Orifice
,”
Chem. Eng. Sci.
,
36
(
2
), pp.
405
411
.10.1016/0009-2509(81)85021-X
30.
Chesters
,
A. K.
,
1978
, “
Modes of Bubble Growth in the Slow-Formation Regime of Nucleate Pool Boiling
,”
Int. J. Multiphase Flows
,
4
(
3
), pp.
279
302
.10.1016/0301-9322(78)90003-4
31.
Lin
,
J. N.
,
Banerji
,
S. K.
, and
Yasuda
,
H.
,
1994
, “
Role of Interfacial Tension in the Formation and the Detachment of Air Bubbles. 1. A Single Hole on a Horizontal Plane Immersed in Water
,”
J. Am. Chem. Soc.
,
10
(
3
), pp.
936
942
.10.1021/la00015a054
32.
Gerlach
,
D.
,
Biswas
,
G.
,
Durst
,
F.
, and
Kolobaric
,
V.
,
2005
, “
Quasi-Static Bubble Formation on Submerged Orifices
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
425
438
.10.1016/j.ijheatmasstransfer.2004.09.002
33.
Vafaei
,
S.
,
Borca-Tasciuc
,
T.
, and
Wen
,
D.
,
2010
, “
Theoretical and Experimental Investigation of Quasi-Steady-State Bubble Growth on Top of Submerged Stainless-Steel Nozzles
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
369
(
1–3
), pp.
11
19
.10.1016/j.colsurfa.2010.07.009
34.
Manglik
,
R. M.
,
2006
, “
On the Advancements in Boiling, Two-Phase Flow Heat Transfer, and Interfacial Phenomena
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
12
), pp.
1237
1242
.10.1115/1.2374897
35.
Fritz
,
W.
,
1935
, “
Maximum Volume of Vapor Bubbles
,”
Phys. Z.
,
36
, pp.
379
381
.
36.
Yang
,
Z. L.
,
Dinh
,
T. N.
,
Nourgaliev
,
R. R.
, and
Sehgal
,
B. R.
,
2001
, “
Numerical Investigation of Bubble Growth and Detachment by the Lattice-Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
195
206
.10.1016/S0017-9310(00)00101-0
37.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2010
, “
A Model to Predict the Effect of Contact Angle on the Bubble Departure Diameter During Heterogeneous Boiling
,”
Int. Comm. Heat Mass Transfer
,
37
(
8
), pp.
964
969
.10.1016/j.icheatmasstransfer.2010.06.024
38.
Manoharan
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2016
, “
Visual Observations of Chamber Volume Effect on Ebullience From Submerged Orifice Plates
,”
ASME Paper No. HTFEICNMM2016-1014
.10.1115/HTFEICNMM2016-1014
39.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor and Francis
,
New York
.
You do not currently have access to this content.