Abstract

Nanobubbles are typically classified as gas/vapor phase cavities in an aqueous solution with a characteristic length of approximately 100 nanometers (nm). The theoretical lifetime of these nanobubbles has been estimated to be less than ∼1 μs at a diameter of 100 nm based upon the Young-Laplace pressure, but experimental observations have been reported that indicate that they may exist for many hours, or even days. These nanobubbles can be generated by a number of different methods, such as solvent exchange, pressure and/or temperature variations, chemical reactions, or through the electron beam radiolysis of water. The imaging methods utilized to observe these nanobubbles have evolved from low temporal resolution/high spatial resolution, using atomic force microscopy (AFM); or low spatial resolution/high temporal resolution, using optical microscopy (X-rays); or finally, high spatial/high temporal resolution using more recent electron microscopy techniques. A review of the various methods utilized in the nucleation of nanobubbles and the different imaging technologies utilized, along with a summary of the most recent experimental and theoretical investigations of the dynamic behavior and processes of these nanobubbles, including nanobubble growth, nanobubble collapse, and nanobubble coalescence, are presented, discussed and summarized.

References

1.
Parker
,
J. L.
,
Claesson
,
P. M.
, and
Attard
,
P.
,
1994
, “
Bubbles, Cavities and the Long-Ranged Attraction Between Hydrophobic Surfaces
,”
J. Phys. Chem.
,
98
(
34
), pp.
8468
8480
.10.1021/j100085a029
2.
Epstein
,
P. S.
, and
Plesset
,
M. S.
,
1950
, “
On the Stability of Gas Bubbles in Liquid-Gas Solutions
,”
J. Chem. Phys.
,
18
(
11
), pp.
1505
1509
.10.1063/1.1747520
3.
Ljunggren
,
S.
, and
Eriksson
,
J. C.
,
1997
, “
The Lifetime of a Colloid-Sized Gas Bubble in Water and the Cause of the Hydrophobic Attraction
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
129–130
, pp.
151
155
.10.1016/S0927-7757(97)00033-2
4.
Ishida
,
N.
,
Inoue
,
T.
,
Miyahara
,
M.
, and
Higashitani
,
K.
,
2000
, “
Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy
,”
Langmuir
,
16
(
16
), pp.
6377
6380
.10.1021/la000219r
5.
Chan
,
C. U.
, and
Ohl
,
C.-D.
,
2012
, “
Total-Internal-Reflection-Fluorescence Microscopy for the Study of Nanobubble Dynamics
,”
Phys. Rev. Lett.
,
109
(
17
), p.
174501
.10.1103/PhysRevLett.109.174501
6.
Karpitschka
,
S.
,
Dietrich
,
E.
,
Seddon
,
J. R. T.
,
Zandvliet
,
H. J. W.
,
Lohse
,
D.
, and
Riegler
,
H.
,
2012
, “
Nonintrusive Optical Visualization of Surface Nanobubbles
,”
Phys. Rev. Lett
.,
109
(
6
), p.
066102
.10.1103/PhysRevLett.109.066102
7.
Uchida
,
T.
,
Oshita
,
S.
,
Ohmori
,
M.
,
Tsuno
,
T.
,
Soejima
,
K.
,
Shinozaki
,
S.
,
Take
,
Y.
, and
Mitsuda
,
K.
,
2011
, “
Transmission Electron Microscopic Observations of Nanobubbles and Their Capture of Impurities in Wastewater
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
295
.10.1186/1556-276X-6-295
8.
Grogan
,
J. M.
,
Schneider
,
N. M.
,
Ross
,
F. M.
, and
Bau
,
H. H.
,
2014
, “
Bubble and Pattern Formation in Liquid Induced by an Electron Beam
,”
Nano Lett.
,
14
(
1
), pp.
359
364
.10.1021/nl404169a
9.
Shin
,
D.
,
Park
,
J. B.
,
Kim
,
Y.-J.
,
Kim
,
S. J.
,
Kang
,
J. H.
,
Lee
,
B.
,
Cho
,
S.-P.
,
Hong
,
B. H.
, and
Novoselov
,
K. S.
,
2015
, “
Growth Dynamics and Gas Transport Mechanism of Nanobubbles in Graphene Liquid Cells
,”
Nat. Commun.
,
6
(
1
), p.
6
.10.1038/ncomms7068
10.
Nirmalkar
,
N.
,
Pacek
,
A. W.
, and
Barigou
,
M.
,
2018
, “
On the Existence and Stability of Bulk Nanobubbles
,”
Langmuir
,
34
(
37
), pp.
10964
10973
.10.1021/acs.langmuir.8b01163
11.
Rabinowitz, J.
,
Whittier
,
E.
,
Liu
,
Z.
,
Jayant
,
K.
,
Frank
,
J.
, and
Shepard
,
K.
,
2020
, “
Nanobubble-Controlled Nanofluidic Transport
,”
Sci. Adv.
,
6
(
46
), p.
eabd0126
.10.1126/sciadv.abd0126
12.
Zhang, X. H.
, Zhang, X. D., Lou, S. T., Zhang, Z. X., Sun, J. L., and Hu, J.,
2004
, “
Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface
,”
Langmuir
,
20
(
9
), pp.
3813
3815
.
13.
Häbich
,
A.
,
Ducker
,
W.
,
Dunstan
,
D. E.
, and
Zhang
,
X.
,
2010
, “
Do Stable Nanobubbles Exist in Mixtures of Organic Solvents and Water?
,”
J. Phys. Chem. B
,
114
(
20
), pp.
6962
6967
.10.1021/jp911868j
14.
Hain
,
N.
,
Wesner
,
D.
,
Druzhinin
,
S. I.
, and
Schönherr
,
H.
,
2016
, “
Surface Nanobubbles Studied by Time-Resolved Fluorescence Microscopy Methods Combined With AFM: The Impact of Surface Treatment on Nanobubble Nucleation
,”
Langmuir
,
32
(
43
), pp.
11155
11163
.10.1021/acs.langmuir.6b01662
15.
Zhang
,
X.
,
Lhuissier
,
H.
,
Enríquez
,
O. R.
,
Sun
,
C.
, and
Lohse
,
D.
,
2013
, “
Deactivation of Microbubble Nucleation Sites by Alcohol-Water Exchange
,”
Langmuir
,
29
(
32
), pp.
9979
9984
.10.1021/la402015q
16.
Zhang
,
X. H.
,
Maeda
,
N.
, and
Hu
,
J.
,
2008
, “
Thermodynamic Stability of Interfacial Gaseous States
,”
J. Phys. Chem. B
,
112
(
44
), pp.
13671
13675
.10.1021/jp807515f
17.
Hampton
,
M. A.
,
Donose
,
B. C.
, and
Nguyen
,
A. V.
,
2008
, “
Effect of Alcohol-Water Exchange and Surface Scanning on Nanobubbles and the Attraction Between Hydrophobic Surfaces
,”
J. Colloid Interface Sci.
,
325
(
1
), pp.
267
274
.10.1016/j.jcis.2008.05.044
18.
Lou
,
S.
,
Gao
,
J.
,
Xiao
,
X.
,
Li
,
X.
,
Li
,
G.
,
Zhang
,
Y.
,
Li
,
M.
,
Sun
,
J.
,
Li
,
X.
, and
Hu
,
J.
,
2002
, “
Studies of Nanobubbles Produced at Liquid/Solid Interfaces
,”
Mater. Charact.
,
48
(
2–3
), pp.
211
214
.10.1016/S1044-5803(02)00241-3
19.
Brenner
,
M. P.
, and
Lohse
,
D.
,
2008
, “
Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization
,”
Phys. Rev. Lett.
,
101
(
21
), p.
214505
.10.1103/PhysRevLett.101.214505
20.
Petsev
,
N. D.
,
Shell
,
M. S.
, and
Leal
,
L. G.
,
2013
, “
Dynamic Equilibrium Explanation for Nanobubbles' Unusual Temperature and Saturation Dependence
,”
Phys. Rev. E
,
88
(
1
), p.
010402(R)
.10.1103/PhysRevE.88.010402
21.
Zhang
,
X.
,
Ren
,
J.
,
Yang
,
H.
,
He
,
Y.
,
Tan
,
J.
, and
Qiao
,
G. G.
,
2012
, “
From Transient Nanodroplets to Permanent Nanolenses
,”
Soft Matter
,
8
(
16
), pp.
4314
4317
.10.1039/c2sm07267j
22.
Zhang
,
X. H.
,
Zhang
,
X. D.
,
Lou
,
S. T.
,
Zhang
,
Z. X.
,
Sun
,
J. L.
, and
Hu
,
J.
,
2004
, “
Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface
,”
Langmuir
,
20
(
9
), pp.
3813
3815
.10.1021/la0364542
23.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2006
, “
Comparison of Nucleation Site Density for Pool Boiling and Gas Nucleation
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
1
), pp.
13
20
.10.1115/1.2130399
24.
Xu
,
C.
,
Peng
,
S.
,
Qiao
,
G. G.
,
Gutowski
,
V.
,
Lohse
,
D.
, and
Zhang
,
X.
,
2014
, “
Nanobubble Formation on a Warmer Substrate
,”
Soft Matter
,
10
(
39
), pp.
7857
7864
.10.1039/C4SM01025F
25.
Guan
,
M.
,
Guo
,
W.
,
Gao
,
L.
,
Tang
,
Y.
,
Hu
,
J.
, and
Dong
,
Y.
,
2012
, “
Investigation on the Temperature Difference Method for Producing Nanobubbles and Their Physical Properties
,”
Chemphyschem
,
13
(
8
), pp.
2115
2118
.10.1002/cphc.201100912
26.
Zhang
,
X.
,
Lhuissier
,
H.
,
Sun
,
C.
, and
Lohse
,
D.
,
2014
, “
Surface Nanobubbles Nucleate Microdroplets
,”
Phys. Rev. Lett.
,
112
(
14
), p.
144503
.10.1103/PhysRevLett.112.144503
27.
Chan
,
C. U.
,
Chen
,
L.
,
Arora
,
M.
, and
Ohl
,
C.-D.
,
2015
, “
Collapse of Surface Nanobubbles
,”
Phys. Rev. Lett.
,
114
(
11
), p.
5
.10.1103/PhysRevLett.114.114505
28.
Zhang
,
J.
,
Wei
,
L.
, and
Zhao
,
Y.
,
2020
, “
Synthesis of Nanobubbles for Improved Ultrasound Tumor-Imaging Applications
,”
3 Biotech
,
10
(
1
), p.
12
.10.1007/s13205-019-1992-1
29.
Brotchie
,
A.
, and
Zhang
,
X. H.
,
2011
, “
Response of Interfacial Nanobubbles to Ultrasound Irradiation
,”
Soft Matter
,
7
(
1
), pp.
265
269
.10.1039/C0SM00731E
30.
Zhang
,
X.
,
Chan
,
D. Y. C.
,
Wang
,
D.
, and
Maeda
,
N.
,
2013
, “
Stability of Interfacial Nanobubbles
,”
Langmuir
,
29
(
4
), pp.
1017
1023
.10.1021/la303837c
31.
Wang
,
Y.
,
Chen
,
J.
,
Jiang
,
Y.
,
Wang
,
X.
, and
Wang
,
W.
,
2019
, “
Label-Free Optical Imaging of the Dynamic Stick-Slip and Migration of Single Sub-100-nm Surface Nanobubbles: A Superlocalization Approach
,”
Anal. Chem.
,
91
(
7
), pp.
4665
4671
.10.1021/acs.analchem.9b00022
32.
Hu
,
Y.-X.
,
Ying
,
Y.-L.
,
Gao
,
R.
,
Yu
,
R.-J.
, and
Long
,
Y.-T.
,
2018
, “
Characterization of the Dynamic Growth of the Nanobubble Within the Confined Glass Nanopore
,”
Anal. Chem.
,
90
(
21
), pp.
12352
12355
.10.1021/acs.analchem.8b03923
33.
Uchida
,
T.
,
Liu
,
S.
,
Enari
,
M.
,
Oshita
,
S.
,
Yamazaki
,
K.
, and
Gohara
,
K.
,
2016
, “
Effect of NaCl on the Lifetime of Micro- and Nanobubbles
,”
Nanomaterials
,
6
(
2
), p.
31
.10.3390/nano6020031
34.
Zhang
,
L.
,
Zhao
,
B.
,
Xue
,
L.
,
Guo
,
Z.
,
Dong
,
Y.
,
Fang
,
H.
,
Tai
,
R.
, and
Hu
,
J.
,
2013
, “
Imaging Interfacial Micro- and Nano-Bubbles by Scanning Transmission Soft X-Ray Microscopy
,”
J. Synchrotron. Radiat.
,
20
(
3
), pp.
413
418
.10.1107/S0909049513003671
35.
Oh
,
S. H.
, and
Kim
,
J.-M.
,
2017
, “
Generation and Stability of Bulk Nanobubbles
,”
Langmuir
,
33
(
15
), pp.
3818
3823
.10.1021/acs.langmuir.7b00510
36.
Ahmed
,
A. K. A.
,
Sun
,
C.
,
Hua
,
L.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Zhang
,
W.
, and
Marhaba
,
T.
,
2018
, “
Generation of Nanobubbles by Ceramic Membrane Filters: The Dependence of Bubble Size and Zeta Potential on Surface Coating, Pore Size and Injected Gas Pressure
,”
Chemosphere
,
203
, pp.
327
335
.10.1016/j.chemosphere.2018.03.157
37.
Meegoda
,
J. N.
,
Hewage
,
S. A.
, and
Batagoda
,
J. H.
,
2019
, “
Application of the Diffused Double Layer Theory to Nanobubbles
,”
Langmuir
,
35
(
37
), pp.
12100
12112
.10.1021/acs.langmuir.9b01443
38.
Zhang
,
H.
,
Guo
,
Z.
, and
Zhang
,
X.
,
2020
, “
Surface Enrichment of Ions Leads to the Stability of Bulk Nanobubbles
,”
Soft Matter
,
16
(
23
), pp.
5470
5477
.10.1039/D0SM00116C
39.
Ma
,
T.
,
Kimura
,
Y.
,
Yamamoto
,
H.
,
Feng
,
X.
,
Hirano-Iwata
,
A.
, and
Niwano
,
M.
,
2020
, “
Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film With Ordered Nanopores
,”
J. Phys. Chem. B
,
124
(
24
), pp.
5067
5072
.10.1021/acs.jpcb.0c02279
40.
Jin
,
J.
,
Feng
,
Z.
,
Yang
,
F.
, and
Gu
,
N.
,
2019
, “
Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles
,”
Langmuir
,
35
(
12
), pp.
4238
4245
.10.1021/acs.langmuir.8b04314
41.
Kim
,
J.-Y.
,
Song
,
M.-G.
, and
Kim
,
J.-D.
,
2000
, “
Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions
,”
J. Colloid Interface Sci.
,
223
(
2
), pp.
285
291
.10.1006/jcis.1999.6663
42.
Oeffinger
,
B. E.
, and
Wheatley
,
M. A.
,
2004
, “
Development and Characterization of a Nano-Scale Contrast Agent
,”
Ultrasonic
,
42
(
1–9
), pp.
343
347
.10.1016/j.ultras.2003.11.011
43.
Cho
,
S.-H.
,
Kim
,
J.-Y.
,
Chun
,
J.-H.
, and
Kim
,
J.-D.
,
2005
, “
Ultrasonic Formation of Nanobubbles and Their Zeta-Potentials in Aqueous Electrolyte and Surfactant Solutions
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
269
(
1–3
), pp.
28
34
.10.1016/j.colsurfa.2005.06.063
44.
Nirmalkar
,
N.
,
Pacek
,
A. W.
, and
Barigou
,
M.
,
2019
, “
Bulk Nanobubbles From Acoustically Cavitated Aqueous Organic Solvent Mixtures
,”
Langmuir
,
35
(
6
), pp.
2188
2195
.10.1021/acs.langmuir.8b03113
45.
Zhang
,
Y.
, and
Li
,
S.
,
2014
, “
A General Approach for Rectified Mass Diffusion of Gas Bubbles in Liquids Under Acoustic Excitation
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), p.
042001
.10.1115/1.4026089
46.
Svetovoy
,
V. B.
,
Sanders
,
R. G. P.
, and
Elwenspoek
,
M. C.
,
2013
, “
Transient Nanobubbles in Short-Time Electrolysis
,”
J. Phys. Condens. Matter
,
25
(
18
), p.
184002
.https://arxiv.org/pdf/1301.2680.pdf
47.
Zhang
,
L.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Li
,
Z.
,
Shen
,
G.
,
Ye
,
M.
,
Fan
,
C.
,
Fang
,
H.
, and
Hu
,
J.
,
2006
, “
Electrochemically Controlled Formation and Growth of Hydrogen Nanobubbles
,”
Langmuir
,
22
(
19
), pp.
8109
8113
.10.1021/la060859f
48.
Yang
,
S.
,
Tsai
,
P.
,
Kooij
,
E. S.
,
Prosperetti
,
A.
,
J. W. Zandvliet
,
H.
, and
Lohse
,
D.
,
2013
, “
Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces (Vol. 25, p. 1466, 2009)
,”
Langmuir
,
29
(
19
), pp.
5937
5937
.10.1021/la401330b
49.
Luo
,
L.
, and
White
,
H. S.
,
2013
, “
Electrogeneration of Single Nanobubbles at Sub-50-nm-Radius Latinum Nanodisk Electrodes
,”
Langmuir
,
29
(
35
), pp.
11169
11175
.10.1021/la402496z
50.
Chen
,
Q.
,
Luo
,
L.
, and
White
,
H. S.
,
2015
, “
Electrochemical Generation of a Hydrogen Bubble at a Recessed Latinum Nanopore Electrode
,”
Langmuir
,
31
(
15
), pp.
4573
4581
.10.1021/acs.langmuir.5b00234
51.
Ren
,
H.
,
German
,
S. R.
,
Edwards
,
M. A.
,
Chen
,
Q.
, and
White
,
H. S.
,
2017
, “
Electrochemical Generation of Individual O-2 Nanobubbles Via H2O2 Oxidation
,”
J. Phys. Chem. Lett.
,
8
(
11
), pp.
2450
2454
.10.1021/acs.jpclett.7b00882
52.
German
,
S. R.
,
Chen
,
Q.
,
Edwards
,
M. A.
, and
White
,
H. S.
,
2016
, “
Electrochemical Measurement of Hydrogen and Nitrogen Nanobubble Lifetimes at Pt Nanoelectrodes
,”
J. Electrochem. Soc.
,
163
(
4
), pp.
H3160
H3166
.10.1149/2.0221604jes
53.
Svetovoy
,
V. B.
,
Sanders
,
R. G. P.
,
Lammerink
,
T. S. J.
, and
Elwenspoek
,
M. C.
,
2011
, “
Combustion of Hydrogen-Oxygen Mixture in Electrochemically Generated Nanobubbles
,”
Phys. Rev. E
,
84
(
3
), p.
035302(R)
.10.1103/PhysRevE.84.035302
54.
Liu
,
Y.
,
Edwards
,
M. A.
,
German
,
S. R.
,
Chen
,
Q.
, and
White
,
H. S.
,
2017
, “
The Dynamic Steady State of an Electrochemically Generated Nanobubble
,”
Langmuir
,
33
(
8
), pp.
1845
1853
.10.1021/acs.langmuir.6b04607
55.
Chen
,
Q.
,
Luo
,
L.
,
Faraji
,
H.
,
Feldberg
,
S. W.
, and
White
,
H. S.
,
2014
, “
Electrochemical Measurements of Single H-2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes
,”
J. Phys. Chem. Lett.
,
5
(
20
), pp.
3539
3544
.10.1021/jz501898r
56.
Chen
,
Q.
,
Wiedenroth
,
H. S.
,
German
,
S. R.
, and
White
,
H. S.
,
2015
, “
Electrochemical Nucleation of Stable N-2 Nanobubbles at Pt Nanoelectrodes
,”
J. Am. Chem. Soc.
,
137
(
37
), pp.
12064
12069
.10.1021/jacs.5b07147
57.
Smeets
,
R. M. M.
,
Keyser
,
U. F.
,
Wu
,
M. Y.
,
Dekker
,
N. H.
, and
Dekker
,
C.
,
2006
, “
Nanobubbles in Solid-State Nanopores
,”
Phys. Rev. Lett.
,
97
(
8
), p.
088101
.10.1103/PhysRevLett.97.088101
58.
Li
,
Q.
,
Ying
,
Y. ‐L.
,
Hu
,
Y. ‐X.
,
Liu
,
S. ‐C.
, and
Long
,
Y. ‐T.
,
2020
, “
Monitoring Nanobubble Nucleation at Early-Stage Within a Sub-9 nm Solid-State Nanopore
,”
Electrophoresis
,
41
(
10–11
), pp.
959
965
.10.1002/elps.201900305
59.
German
,
S. R.
,
Edwards
,
M. A.
,
Chen
,
Q.
, and
White
,
H. S.
,
2016
, “
Laplace Pressure of Individual H-2 Nanobubbles From Pressure-Addition Electrochemistry
,”
Nano Lett.
,
16
(
10
), pp.
6691
6694
.10.1021/acs.nanolett.6b03590
60.
Kikuchi
,
K.
,
Tanaka
,
Y.
,
Saihara
,
Y.
, and
Ogumi
,
Z.
,
2006
, “
Study of Hydrogen Nanobubbles in Solution in the Vicinity of a Latinum Wire Electrode Using Double-Potential Step Chronoamperometry
,”
Electrochim. Acta
,
52
(
3
), pp.
904
913
.10.1016/j.electacta.2006.06.026
61.
Ghaani
,
M. R.
,
Kusalik
,
P. G.
, and
English
,
N. J.
,
2020
, “
Massive Generation of Metastable Bulk Nanobubbles in Water by External Electric Fields
,”
Sci. Adv.
,
6
(
14
), p.
eaaz0094
.10.1126/sciadv.aaz0094
62.
White
,
E. R.
,
Mecklenburg
,
M.
,
Singer
,
S. B.
,
Aloni
,
S.
, and
Regan
,
B. C.
,
2011
, “
Imaging Nanobubbles in Water With Scanning Transmission Electron Microscopy
,”
Appl. Phys. Exp.
,
4
(
5
), p.
055201
.10.1143/APEX.4.055201
63.
Schneider
,
N. M.
,
Norton
,
M. M.
,
Mendel
,
B. J.
,
Grogan
,
J. M.
,
Ross
,
F. M.
, and
Bau
,
H. H.
,
2014
, “
Electron-Water Interactions and Implications for Liquid Cell Electron Microscopy
,”
J. Phys. Chem. C
,
118
(
38
), pp.
22373
22382
.10.1021/jp507400n
64.
Nair
,
A. R.
, and
Sathian
,
S. P.
,
2016
, “
Heat Transfer Across Nanoparticle-Liquid Interfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p.
112402
.10.1115/1.4033954
65.
Kwak
,
H.-Y.
,
Oh
,
J.
,
Yoo
,
Y.
, and
Mahmood
,
S.
,
2014
, “
Bubble Formation on the Surface of Laser-Irradiated Nanosized Particles
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
8
), p.
081501
.10.1115/1.4027252
66.
Adleman
,
J. R.
,
Boyd
,
D. A.
,
Goodwin
,
D. G.
, and
Psaltis
,
D.
,
2009
, “
Heterogenous Catalysis Mediated by Plasmon Heating
,”
Nano Lett.
,
9
(
12
), pp.
4417
4423
.10.1021/nl902711n
67.
Hou
,
L.
,
Yorulmaz
,
M.
,
Verhart
,
N. R.
, and
Orrit
,
M.
,
2015
, “
Explosive Formation and Dynamics of Vapor Nanobubbles Around a Continuously Heated Gold Nanosphere
,”
New J. Phys.
,
17
(
1
), p.
013050
.10.1088/1367-2630/17/1/013050
68.
Boulais
,
É.
,
Lachaine
,
R.
, and
Meunier
,
M.
,
2012
, “
Plasma Mediated Off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation
,”
Nano Lett.
,
12
(
9
), pp.
4763
4769
.10.1021/nl302200w
69.
Walczyk
,
W.
,
Hain
,
N.
, and
Schönherr
,
H.
,
2014
, “
Hydrodynamic Effects of the Tip Movement on Surface Nanobubbles: A Combined Tapping Mode, Lift Mode and Force Volume Mode AFM Study
,”
Soft Matter
,
10
(
32
), pp.
5945
5954
.10.1039/C4SM01024H
70.
Li
,
D.
,
Zeng
,
B.
, and
Wang
,
Y.
,
2019
, “
Probing the “Gas Tunnel” Between Neighboring Nanobubbles
,”
Langmuir
,
35
(
47
), pp.
15029
15037
.10.1021/acs.langmuir.9b02682
71.
Bhushan
,
B.
,
Wang
,
Y.
, and
Maali
,
A.
,
2008
, “
Coalescence and Movement of Nanobubbles Studied With Tapping Mode AFM and Tip-Bubble Interaction Analysis
,”
J. Phys.-Condens. Matter
,
20
(
48
), p.
485004
.10.1088/0953-8984/20/48/485004
72.
Hao
,
R.
,
Fan
,
Y.
,
Howard
,
M. D.
,
Vaughan
,
J. C.
, and
Zhang
,
B.
,
2018
, “
Imaging Nanobubble Nucleation and Hydrogen Spillover During Electrocatalytic Water Splitting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
23
), pp.
5878
5883
.10.1073/pnas.1800945115
73.
Zhang
,
X. H.
,
Khan
,
A.
, and
Ducker
,
W. A.
,
2007
, “
A Nanoscale Gas State
,”
Phys. Rev. Lett.
,
98
(
13
), p.
136101
.10.1103/PhysRevLett.98.136101
74.
German
,
S. R.
,
Wu
,
X.
,
An
,
H.
,
Craig
,
V. S. J.
,
Mega
,
T. L.
, and
Zhang
,
X.
,
2014
, “
Interfacial Nanobubbles Are Leaky: Permeability of the Gas/Water Interface
,”
ACS Nano
,
8
(
6
), pp.
6193
6201
.10.1021/nn5016049
75.
Chen
,
J.
,
Zhou
,
K.
,
Wang
,
Y.
,
Gao
,
J.
,
Yuan
,
T.
,
Pang
,
J.
,
Tang
,
S.
,
Chen
,
H.-Y.
, and
Wang
,
W.
,
2019
, “
Measuring the Activation Energy Barrier for the Nucleation of Single Nanosized Vapor Bubbles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
26
), pp.
12678
12683
.10.1073/pnas.1903259116
76.
Fang
,
H. P.
,
2020
, “
Ultrahigh Density Inside a Nanobubble
,”
Sci. China-Phys. Mech. Astron.
,
63
(
8
), p.
287031
.10.1007/s11433-020-1577-2
77.
Zhou
,
L.
,
Wang
,
X.
,
Shin
,
H.-J.
,
Wang
,
J.
,
Tai
,
R.
,
Zhang
,
X.
,
Fang
,
H.
,
Xiao
,
W.
,
Wang
,
L.
,
Wang
,
C.
,
Gao
,
X.
,
Hu
,
J.
, and
Zhang
,
L.
,
2020
, “
Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water
,”
J. Am. Chem. Soc.
,
142
(
12
), pp.
5583
5593
.10.1021/jacs.9b11303
78.
Tomo
,
Y.
,
Takahashi
,
K.
,
Nishiyama
,
T.
,
Ikuta
,
T.
, and
Takata
,
Y.
,
2017
, “
Nanobubble Nucleation Studied Using Fresnel Fringes in Liquid Cell Electron Microscopy
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1460
1465
.10.1016/j.ijheatmasstransfer.2017.01.013
79.
Tomo
,
Y.
,
Li
,
Q.-Y.
,
Ikuta
,
T.
,
Takata
,
Y.
, and
Takahashi
,
K.
,
2018
, “
Unexpected Homogeneous Bubble Nucleation Near a Solid-Liquid Interface
,”
J. Phys. Chem. C
,
122
(
50
), pp.
28712
28716
.10.1021/acs.jpcc.8b09200
80.
Liu
,
Y.
, and
Dillon
,
S. J.
,
2014
, “
In Situ Observation of Electrolytic H-2 Evolution Adjacent to Gold Cathodes
,”
Chem. Commun.
,
50
(
14
), pp.
1761
1763
.10.1039/C3CC46737F
81.
Chen
,
Q.
,
Smith
,
J. M.
,
Park
,
J.
,
Kim
,
K.
,
Ho
,
D.
,
Rasool
,
H. I.
,
Zettl
,
A.
, and
Alivisatos
,
A. P.
,
2013
, “
3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy
,”
Nano Lett.
,
13
(
9
), pp.
4556
4561
.10.1021/nl402694n
82.
Chen
,
G.
,
Bau
,
H. H.
, and
Li
,
C. H.
,
2019
, “
In Situ Transmission Electron Microscope Liquid Cell 3D Profile Reconstruction and Analysis of Nanoscale Liquid Water Contact Line Movements
,”
Langmuir
,
35
(
51
), pp.
16712
16717
.10.1021/acs.langmuir.9b01428
83.
Tan
,
B. H.
,
An
,
H.
, and
Ohl
,
C.-D.
,
2017
, “
Resolving the Pinning Force of Nanobubbles With Optical Microscopy
,”
Phys. Rev. Lett.
,
118
(
5
), p.
054501
.10.1103/PhysRevLett.118.054501
84.
Lohse
,
D.
, and
Zhang
,
X.
,
2015
, “
Pinning and Gas Oversaturation Imply Stable Single Surface Nanobubbles
,”
Phys. Rev. E
,
91
(
3
), p.
031003
.10.1103/PhysRevE.91.031003
85.
Yasui
,
K.
,
Tuziuti
,
T.
, and
Kanematsu
,
W.
,
2018
, “
Mysteries of Bulk Nanobubbles (Ultrafine Bubbles); Stability and Radical Formation
,”
Ultrason. Sonochem.
,
48
(
4
), pp.
259
266
.10.1016/j.ultsonch.2018.05.038
86.
Yasui
,
K.
,
Tuziuti
,
T.
,
Kanematsu
,
W.
, and
Kato
,
K.
,
2016
, “
Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered With Hydrophobic Material
,”
Langmuir
,
32
(
43
), pp.
11101
11110
.10.1021/acs.langmuir.5b04703
87.
Teshima,
H.
,
Nishiyama
,
T.
, and
Takahashi
,
K.
,
2017
, “
Nanoscale Pinning Effect Evaluated From Deformed Nanobubbles
,”
J. Chem. Phys
.,
146
(
1
), p.
014708
.10.1063/1.4973385
88.
Tan
,
B. H.
,
An
,
H.
, and
Ohl
,
C.-D.
,
2019
, “
Stability, Dynamics, and Tolerance to Undersaturation of Surface Nanobubbles
,”
Phys. Rev. Lett.
,
122
(
13
), p.
134502
.10.1103/PhysRevLett.122.134502
89.
Huang
,
T.-W.
,
Liu
,
S.-Y.
,
Chuang
,
Y.-J.
,
Hsieh
,
H.-Y.
,
Tsai
,
C.-Y.
,
Wu
,
W.-J.
,
Tsai
,
C.-T.
,
Mirsaidov
,
U.
,
Matsudaira
,
P.
,
Chang
,
C.-S.
,
Tseng
,
F.-G.
, and
Chen
,
F.-R.
,
2013
, “
Dynamics of Hydrogen Nanobubbles in KLH Protein Solution Studied With in Situ wet-TEM
,”
Soft Matter
,
9
(
37
), pp.
8856
8861
.10.1039/c3sm50906k
90.
Wang
,
L.
,
Liu
,
L.
,
Mohsin
,
A.
,
Wen
,
J.
,
Sheng
,
H.
, and
Miller
,
D. J.
,
2017
, “
Dynamic Nanobubbles in Graphene Liquid Cell Under Elecron Beam Irradiation
,”
Microsc. Microanal.
,
23
(
S1
), pp.
866
867
.10.1017/S1431927617004998
91.
Hu
,
Q.
, and
Jin
,
C.
,
2019
, “
In Situ TEM Observation of Radiolysis and Condensation of Water Via Graphene Liquid Cell
,”
Acta Physico-Chim. Sin.
,
35
(
1
), pp.
101
107
.10.3866/PKU.WHXB201801113
92.
Kim
,
Q.
,
Shin
,
D.
,
Park
,
J.
,
Weitz
,
D. A.
, and
Jhe
,
W.
,
2021
, “
Initial Growth Dynamics of 10 nm Nanobubbles in the Graphene Liquid Cell
,”
Appl. Nanosci.
,
11
(
1
), pp.
1
7
.10.1007/s13204-018-0925-3
93.
Cosden
,
I. A.
, and
Lukes
,
J. R.
,
2011
, “
Effect of Cutoff Radius on the Surface Tension of Nanoscale Bubbles
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
10
), p.
101501
.10.1115/1.4004167
94.
Hirokawa
,
S.
,
Teshima
,
H.
,
Solís-Fernández
,
P.
,
Ago
,
H.
,
Tomo
,
Y.
,
Li
,
Q.-Y.
, and
Takahashi
,
K.
,
2020
, “
Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells
,”
ACS Omega
,
5
(
19
), pp.
11180
11185
.10.1021/acsomega.0c01207
95.
Choi
,
H.
,
Chen
,
G.
, and
Li
,
C.
,
2021
, “
Three-Dimensional Investigation of Diffusively Controlled Growth of Gas Nanobubbles
,”
Phys. Rev. E
(Submitted).
96.
Dyett
,
B. P.
, and
Zhang
,
X.
,
2020
, “
Accelerated Formation of H-2 Nanobubbles From a Surface Nanodroplet Reaction
,”
ACS Nano
,
14
(
9
), pp.
10944
10953
.10.1021/acsnano.0c03059
97.
Vance
,
J. R.
, and
Dillon
,
S. J.
,
2017
, “
Thermally Driven Bubble Evolution at a Heater Wire in Water Characterized by High-Speed Transmission Electron Microscopy
,”
Chem. Commun.
,
53
(
36
), pp.
4930
4933
.10.1039/C7CC00964J
98.
Novak
,
B. R.
,
Maginn
,
E. J.
, and
McCready
,
M. J.
,
2008
, “
An Atomistic Simulation Study of the Role of Asperities and Indentations on Heterogeneous Bubble Nucleation
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
4
), p.
042411
.10.1115/1.2818771
99.
Mao
,
Y.
,
Zhang
,
B.
,
Chen
,
C.-L.
, and
Zhang
,
Y.
,
2017
, “
Hybrid Atomistic-Continuum Simulation of Nanostructure Defect-Induced Bubble Growth
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
10
), p.
104503
.10.1115/1.4036692
100.
Yang
,
S.
,
Bao
,
S.
,
Liu
,
C.
,
Yuan
,
D.
, and
Huang
,
W.
,
2020
, “
An Analytical Model of the Growth of Invisible Bubbles on Solid Surfaces in a Supersaturated Solution
,”
Chem. Eng. Sci.
,
215
, p.
114968
.10.1016/j.ces.2019.05.004
101.
Li
,
X.
,
Wang
,
Y.
,
Zeng
,
B.
,
Detert
,
M.
,
Prosperetti
,
A.
,
Zandvliet
,
H. J. W.
, and
Lohse
,
D.
,
2020
, “
Plasmonic Microbubble Dynamics in Binary Liquids
,”
J. Phys. Chem. Lett.
,
11
(
20
), pp.
8631
8637
.10.1021/acs.jpclett.0c02492
102.
Liu
,
X.
,
Bao
,
L.
,
Dipalo
,
M.
,
De Angelis
,
F.
, and
Zhang
,
X.
,
2016
, “
Formation and Dissolution of Microbubbles on Highly-Ordered Plasmonic Nanopillar Arrays
,”
Sci. Rep.
,
5
(
1
), p.
18515
.10.1038/srep18515
103.
Wang
,
Y.
,
Zaytsev
,
M. E.
,
The
,
H. L.
,
Eijkel
,
J. C. T.
,
Zandvliet
,
H. J. W.
,
Zhang
,
X.
, and
Lohse
,
D.
,
2017
, “
Vapor and Gas-Bubble Growth Dynamics Around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles
,”
ACS Nano
,
11
(
2
), pp.
2045
2051
.10.1021/acsnano.6b08229
104.
Li
,
X.
,
Wang
,
Y.
,
Zaytsev
,
M. E.
,
Lajoinie
,
G.
,
Le The
,
H.
,
Bomer
,
J. G.
,
Eijkel
,
J. C. T.
,
Zandvliet
,
H. J. W.
,
Zhang
,
X.
, and
Lohse
,
D.
,
2019
, “
Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air
,”
J. Phys. Chem. C
,
123
(
38
), pp.
23586
23593
.10.1021/acs.jpcc.9b05374
105.
Zaytsev
,
M. E.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Lajoinie
,
G.
,
Zhang
,
X.
,
Prosperetti
,
A.
,
Zandvliet
,
H. J. W.
, and
Lohse
,
D.
,
2020
, “
Gas-Vapor Interplay in Plasmonic Bubble Shrinkage
,”
J. Phys. Chem. C
,
124
(
10
), pp.
5861
5869
.10.1021/acs.jpcc.9b10675
106.
Dyett
,
B. P.
,
Li
,
M.
,
Zhao
,
H.
, and
Zhang
,
X.
,
2019
, “
Plasmonic Nanobubbles in Armored Surface Nanodroplets
,”
J. Phys. Chem. C
,
123
(
49
), pp.
29866
29874
.10.1021/acs.jpcc.9b08337
107.
Park
,
J. B.
,
Shin
,
D.
,
Kang
,
S.
,
Cho
,
S.-P.
, and
Hong
,
B. H.
,
2016
, “
Distortion in Two-Dimensional Shapes of Merging Nanobubbles: Evidence for Anisotropic Gas Flow Mechanism
,”
Langmuir
,
32
(
43
), pp.
11303
11308
.10.1021/acs.langmuir.6b01672
108.
Li
,
D.
,
Jing
,
D.
,
Pan
,
Y.
,
Wang
,
W.
, and
Zhao
,
X.
,
2014
, “
Coalescence and Stability Analysis of Surface Nanobubbles on the Polystyrene/Water Interface
,”
Langmuir
,
30
(
21
), pp.
6079
6088
.10.1021/la501262a
109.
Chan
,
C. U.
,
Arora
,
M.
, and
Ohl
,
C.-D.
,
2015
, “
Coalescence, Growth, Stability of Surface-Attached Nanobubbles
,”
Langmuir
,
31
(
25
), pp.
7041
7046
.10.1021/acs.langmuir.5b01599
110.
Nag
,
S.
,
Tomo
,
Y.
,
Takahashi
,
K.
, and
Kohno
,
M.
,
2021
, “
Mechanistic Insights Into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopy
,”
Langmuir
,
37
(
2
), pp.
874
881
.10.1021/acs.langmuir.0c03208
You do not currently have access to this content.